刚开始接触深度学习时,面对各种术语和公式,许多人都会感到不知所措。一套系统、循序渐进的入门书籍,不仅能帮你建立清晰的知识框架,还能提升你对深度学习原理和实战的理解。下面这几本书,适合从零基础起步的学习者,一步步走进深度学习的世界。
1. 《深度学习》(Deep Learning)——Ian Goodfellow 等著
这本书被誉为“深度学习圣经”,由领域内三位顶尖专家编写。内容涵盖了深度学习的数学基础、神经网络结构、优化方法和研究前沿,非常系统。虽然偏理论,但如果你已经具备一定数学基础,这是深入理解深度学习原理的不二之选。
免费分享一套人工智能+大模型入门学习资料给大家,这套资料很全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP入门教程及经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
2. 《神经网络与深度学习》——Michael Nielsen
这是一本极为友好的入门书,适合零基础读者。通过图示、实例和直白的解释,引导你了解神经网络的工作方式和训练流程。全书还配有开源代码,可以边看边练,是初学者理解“为什么神经网络能工作”的理想教材。
3. 《Python深度学习》——Francois Chollet
作者是Keras框架的创始人,这本书更偏重实战。除了介绍基本概念,还会教你如何用Keras构建深度神经网络、卷积神经网络(CNN)和循环神经网络(RNN)。适合希望快速上手项目的初学者。
4. 《动手学深度学习》——李沐等
这本中文开源教材配套MXNet和PyTorch两个版本,结合理论讲解和大量代码实践。书中每章都提供可运行的 Jupyter Notebook,并结合真实案例讲解,特别适合想边学边练的读者。它强调“动手”二字,是国内学习深度学习的热门推荐。
5. 《深度学习入门:基于Python的理论与实现》——斋藤康毅
这本书以非常平实、浅显的方式,从零讲起,用Python一步步搭建自己的神经网络。书中代码简洁明了,是很多人入门深度学习的第一本书,被称为“日式清爽风格”的教学典范。
总结
深度学习虽不易入门,但好书是最可靠的老师。不同书籍各有侧重,有的强调理论,有的偏重实战,你可以根据自己的目标(比如科研或应用)灵活选择。无论你是数学派还是编程派,以上这些书都能成为你踏入深度学习领域的有力阶梯。下一步,就从阅读第一本开始吧!