Fantastic Four: 具有恶意安全的诚实大多数四方安全计算

今天给大家带来的是发表于USENIX'21的一篇文章:

《Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security》

链接:

https://www.usenix.org/system/files/sec21-dalskov.pdf

报告的slide链接为:
https://www.usenix.org/system/files/sec21_slides_dalskov.pdf

摘要

本文介绍了一种诚实大多数的鲁棒四方计算协议, 具有主动安全性, 且不依赖于function-dependent preprocessing(预处理), 实现了输出可达性(Guaranteed output delivery, GOD), 同时保证协议中止同时确保任何一方不会得到超过输出的任何信息. 以往实现输出可达性采用的方案有SWIFT[^1], FLASH[^4], 让确定为诚实的参与方重构秘密并在明文下进行协议计算. 实验表明, 本文所提协议的效率接近于仅提供半诚实安全的三方诚实大多数计算协议, 这表明, 通过添加第四方是实现主动安全而不影响性能的有效方案.

背景

当前最快的MPC协议仅提供了中止安全性. 传统的MLaaS架构缺乏隐私保护, 而客户端/服务器模型(client/server model)是MLaaS架构常用的隐私保护替代方案, 如果存在恶意的计算方导致中止计算, 那么用户将无法得到输出, 这对于MLaaS来说是不能接受的, 因此模型的鲁棒性非常重要. 这里的鲁棒性可以理解为, 协议为所有参与方提供输出可达性, 而不论敌手是否存在恶意行为. 考虑MLaaS架构中的两种鲁棒类型的外包计算:

 

安全计算协议

复制秘密共享方案

 

 

 

 

 

 

 

 

Random Bit Generation for 4PC

生成随机比特是多方计算中一个基础原语. 协议6给出了4PC下的具体方案, 总体思想是将参与方分为两组, 每组通过预分享的密钥生成随机比特, 然后再对其进行秘密分享, 通过比特运算与算术运算的关系来生成随机比特. 因为每组中至少有一个参与方是诚实的, 所以恶参与方可以在INP协议中检测出来, 因此可以保证的正确性.

 

Mix-Circuit Computation

比较和截断等非线性函数的计算通常在二进制计算(Binary computation)中更高效, 这反过来要求在算术运算(Arithmetic computation)和二进制运算中相互转换, 因为算术运算明显快于点积运算. 有两种方法来实现转换:

 

恶意安全的三方计算

本文实现鲁棒性依赖于三方计算. 与SPDZ类似, Abspoel等人的方案通过加入MAC到秘密份额中使得作弊可以被检测出来, 但他们的方案不支持连续计算, 因为它涉及验证正确性的最后检测阶段, 在此之前的一切都不被信任, 由于检测会泄漏某些防止作弊的秘密信息, 检测后无法进一步计算. 本文通过修改他们的验证协议, 通过献祭(sacrificing)在底层协议中的一个额外的秘密乘法, 使得这些秘密信息被隐藏起来, 以利于连续计算. 连续计算的好处是允许将秘密共享信息保存更长时间. 在实际操作方面, 检测协议将每个乘法的信息保留到检测阶段. 此外, 连续计算可以减少存储要求, 因为它允许定期检查, 从而删除中间信息.

 

Random Bit Generation for 2PC

这里考虑的是2PC的情况, 与上面的有所区别.

生成具有半诚实安全性的随机比特的方法是两个不同参与方输入随机比特, 然后计算XOR即可.

 

通信复杂度

本文的三方协议比其他工作慢一个数量级, 四方相差大约是2的倍数.

Privacy Robustness

 

 

实验

文章中的实验仅实现了中止安全性. 表2展示了不同安全模型下3层网络训练MNIST的计算开销和不同epoch下的模型准确率. 此外, 表3中可以看出文章所提出的半诚实安全的3PC和恶意安全的4PC开销基本相近.

定点精度的影响

MPC使用浮点算数(float-point arithmetic)通常可以获得更好的准确性, 但开销也相对较大, 因此通常MPC使用的是效率更高的定点算术(fixed-point arithmetic). 但定点算术的方法由于需要进行概率截断, 可能会导致模型的准确率下降, 先前的工作所选的参数在小型模型上具有较好的准确率, 但大多忽略了在大型模型中的准确性降低的程度. 文章分别对比了不同定点精度与计算域位长导致的准确率和效率之间差异. 结果见表5和表6.

文章指出64比特模数和13比特定点精度不能满足大型模型训练要求, 表5双层模型定点精度为12时, 随着epoch增大, 模型的准确度反而下降.

总结

本文提出了Privacy robustness, 在不泄漏任何参与方输入隐私的前提下, 实现了输出可达性. 提出的协议不需要预处理阶段, 但安全性保证的前提是假设诚实方只存储预期信息, 即协议执行完后诚实方不能恢复隐私输入, 为此本文设计的协议不含让诚实参与方恢复信息的步骤. 如果诚实方长期存储所有的输入信息, 则本文提出的方案不适用,安全性假设较强.

参考文献

[^1]: Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. Swift: Super-fast and robust privacy-preserving machine learning. Cryptology ePrint Archive, Report 2020/592, 2020.

[^2]: Arpita Patra and Ajith Suresh. BLAZE: Blazing fast privacy-preserving machine learning. In NDSS 2020. The Internet Society, February 2020.

[^3]: Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Secure evaluation of quantized neural networks. PoPETs, 2020(4):355–375, October 2020.

[^4]: Byali, Megha et al. “FLASH: Fast and Robust Framework for Privacy-preserving Machine Learning.” Proceedings on Privacy Enhancing Technologies 2020 (2019): 459 - 480.

[^5]: Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. An efficient passive-to-active compiler for honest-majority MPC over rings. Cryptology ePrint Archive, Report 2019/1298, 2019.

[^6]: Escudero, D., Ghosh, S., Keller, M., Rachuri, R. & Scholl, P. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. CRYPTO 2020.

作者简介

魏伟明, 应用数学硕士, 目前在广州大学数学与信息科学学院攻读博士学位, 主要研究方向为: 安全多方计算在隐私保护机器学习领域中的应用. 知乎: @云中雨雾.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值