CVPR2021论文--深度学习GAN&&图像处理--论文笔记4

/1  Transformer Interpretability Beyond Attention Visualization(注意力可视化之外的Transformer可解释性)

paper:https://arxiv.org/pdf/2012.09838.pdf
code:https://github.com/hila-chefer/Transformer-Explainability

概述:Self-attention技术,特别是Transformer ,在文本处理领域占据主导地位,并在计算机视觉分类任务中越来越受欢迎。现有的方法要么依赖于获得的attention map,要么沿着注意力图进行启发式传播,以直观地显示导致某种分类的图像部分。在这项工作中,我们提出了一种新的使用Transformer 的计算关联的方法。该方法基于深度泰勒分解原理Taylor decomposition标记局部相关性,然后将这些相关性得分通过层传播。这种传播涉及注意层和跳跃连接,这对现有方法构成了挑战。我们的解决方案基于一个特定的公式,该公式显示了跨层保持总体相关性。我们在最近的可视Transformer 网络以及文本分类问题上对我们的方法进行基准测试,并展示了相对于现有的可解释性方法的明显优势。

https://blog.csdn.net/moxibingdao/article/details/106667002

深度泰勒分解原理Taylor decomposition目前深度学习的解释性不强,深度泰勒分解是一种解释神经网络对个体预测的方法。一般来说,是确定哪些输入变量(这里是像素)对图像分类的结果有多大的贡献,特别是图像中的哪些像素与预测结果直接相关,然后将对应的贡献分配到像素热图上,再对热图可视化就可以得到一种解释。如图所示,鲨鱼图像数据通过机器学习盒子经过分类,得到“鲨鱼”这个分类结果,再将分类结果回溯,图像中的与预测的相关部分以红色突出显示。因此热图中像素的强弱会告诉我们图像中的哪些像素会使图像更多/更少地成为“鲨鱼”。

深度泰勒分解:假定f是神经网络学到的预测函数,对其进行关于某个点x0的近似泰勒展开:

/2  Pre-Trained Image Processing Transformer(底层视觉预训练模型)
paper:https://arxiv.org/pdf/2012.00364.pdf

概述:提出了一种处理低水平视觉任务(超分辨率、图像去雾、图像去噪)的预训练模型。随着现代硬件计算能力的强劲增长,在大规模数据集上学习的预训练深度学习模型(如BERT,GPT-3)已经显示出比传统方法更有效的效果。这一重大进展主要得益于transformer及其变体网络模型的表现能力。本文对底层计算机视觉任务(如去噪、超分辨率和去噪)进行了研究,提出了一种新的预训练模型,即图像处理变换器(IPT)。为了最大限度地挖掘转换器的能力,我们提出利用著名的ImageNet基准测试来生成大量损坏的图像对。IPT模型在这些具有多头和多尾的图像上进行训练。此外,为了更好地适应不同的图像处理任务,还引入了对比学习。因此,经过微调后,预先训练的模型可以有效地应用于期望的任务。由于只有一个预先训练的模型,IPT在各种低级基准上的表现优于当前最先进的方法。

提出的图像处理Transformer 。该模型由用于不同任务的multi-head and multi-tail和包含编码器和解码器的共享Transformer 组成。首先将输入的图像转换为视觉特征,然后将其划分成小块作为视觉词进行后续处理。通过集成输出小块,重构出高视觉质量的图像。

头——编码器——解码器——尾

在自然语言任务中,Transformer 的输入是单词序列,图像数据无法作为输入。解决如何使用 Transformer 处理图像的问题是将 Transformer 应用在视觉任务的第一步。不同于高层视觉语义任务的目标是进行特征抽取,底层视觉任务的输入和输出均为图像。除超分辨率任务之外,大多数底层视觉任务的输入和输出维度相同。相比于高层视觉任务,输入和输出维度匹配这一特性使底层视觉任务更适合由 Transformer 处理。具体而言,研究者在特征图处理阶段引入 Transformer 模块,而图像维度匹配则交给了头结构与尾结构。经过头结果将图片变为特征,再对特征进行切块(按照P*P大小切成N块)和拉平(拉成维度为P^2*C的向量)。将每个特征向量当作一个单词送入Transformer ,得到维度相同的特征。这些输出特征再经过整形和拼接操作,还原为与输入相同维度的特征图。如此处理得到的特征图会被送入一个尾结构,被解码为目标图像。

有了头结构和尾结构负责维度变换,Transformer 模块可以专心地做特征处理。这使得多任务的扩展变得简单:对于不同的任务,只需要增加新的头结构与尾结构即可,多种任务之间的 Transformer 模块是共享的。为了适应多任务,研究者在 Transformer 的解码模块中加入了一个可学习的任务编码。

!!!增加头尾结构,将Transformer 应用到CV领域中

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值