开发者实战 | 在英特尔独立显卡上加速 HALCON AI 模型推理

文章介绍了MVTec的HALCON机器视觉软件与OpenVINO™工具套件的集成,特别是通过HALCONAI加速器接口(AI²),使得在英特尔硬件设备上实现深度学习推理加速变得简单。详细步骤包括安装HALCON和OpenVINO,以及如何利用HALCONAI编写推理程序,展示了深度学习物体检测的应用实例。
摘要由CSDN通过智能技术生成

点击蓝字

关注我们,让开发变得更有趣

以下文章来源于英特尔物联网

作者:张佳骥  MVTec 售前工程师

张   晶  英特尔 AI 开发者市场部经理

c90d4b226dbab7742f354330693b7c64.png

01

什么是HALCON

MVTec HALCON 是一款在全球范围内使用,综合性的机器视觉标准软件。它有一个专门的集成开发环境(HDevelop),专门用于开发图像处理解决方案。使用 MVTec HALCON,您可以:

  • 受益于灵活的软件架构

  • 加快所有可行的机器视觉应用发展

  • 保证快速进入市场

  • 持续地降低成本 

作为一个综合工具箱,HALCON 涵盖了机器视觉应用的整个工作流程。其核心是灵活而强大的图像处理库,其中有 2100 多个算子。HALCON 适用于所有行业,并为图像处理提供卓越性能。

官网链接:https://www.mvtec.com/

f6e54010cd5391f5a0f7615ed7856799.png

图片引用自:

https://www.mvtec.com/cn/products/HALCON/why-HALCON/compatibility

02

什么是 OpenVINO™ 工具套件

OpenVINO™ 工具套件:一款可轻松实现 “一次开发,任意部署” 的,用于AI模型优化和部署的开源工具套件。

  • 提高计算机视觉、自动语音识别、自然语言处理和其他常见任务的深度学习性能

  • 使用经过 TensorFlow、PyTorch、PaddlePaddle 等流行框架训练的模型

  • 减少资源需求,并在从边缘到云的一系列英特尔® 平台上高效部署

f0141253cdd115f0bd4e5490b93e0d14.png

03

安装 HALCON 和 OpenVINO™

从 21.05 版本开始,HALCON 通过全新 HALCON AI 加速器接口 (AI²),支持 OpenVINO™ 工具套件,从而支持 AI 模型在英特尔的硬件设备上实现推理计算加速。

HALCON通过全新 HALCON AI 加速器接口 (AI²):

https://mp.weixin.qq.com/s/4UA_0L0wyKNMIy3lQf2dFw

当前 HALCON 的 AI 模型对英特尔的硬件设备支持,如下表所示:

e7d149f4a48b1d45a2db7ffbcd1fe290.png

要实现使用 HALCON AI 加速器接口在英特尔硬件设备上加速 AI 推理计算,只需要一次安装 HALCON 和 OpenVINO™,然后编写 HALCON AI 推理程序即可。

3.1

安装 HALCON

官网注册

登录 MVTec 官网 HALCON 软件下载页面(目前 HALCON 的最新版本是 23.11 Progress),如果没有注册过 MVTec 用户账号,需要先进行注册个人或企业账号。(请注意此处需要使用公司邮箱注册,其他私人邮箱会注册失败)。也可以查看下面的网页,了解最新版本的更新信息:HALCON 23.11 新功能: MVTec Software。

MVTec 官网 HALCON 软件下载页面:

https://www.mvtec.com/downloads/halcon

HALCON 23.11 新功能: MVTec Software:

https://www.mvtec.com/cn/products/halcon/new-features/halcon-2311

下载并解压

在官网下载完整版的安装包(需要登陆账号), 下载 HALCON: MVTec Software。 可以选择产品的版本和操作系统,此处以 Windows 平台的最新版本 23.11 progress 为例。点击图中链接会自动开始下载,可自行使用工具加速。

下载 HALCON: MVTec Software::

https://login.mvtec.com/identity/login?requestId=e10f838f-3acb-4ff4-951b-49399d0bd84a&view_type=login&approval_prompt=auto

7fc9f350fbc2c528743b7765bc6c91c4.png

下载完成后,解压缩完成,打开对应的文件夹,点击 som.exe 文件,启动 SOM(Software Manager)。

安装设置

SOM 会使用默认浏览器打开安装界面,如果打开界面后未出现可选安装项目,建议重启电脑再次打开 som.exe。

可以点击“语言” 按钮切换界面语言, 点击“环境” 按钮修改一些设置,如程序和数据安装路径,仓库地址等等,一般使用默认值最好。

3a962fb93ae521a0f9169a32a3ceb5d1.png

然后选择“可获得的”页面,找到安装包,点击“安装”按钮, 上方按钮是为当前用户安装,下方是为所有用户安装(需要系统管理员权限),一般点选上方按钮。

aceda21c81639c8d1bf2d97a8adfa620.png

设备空间足够的话(15G 以上),建议右侧全选,全部安装;点击后等待安装结束即可。

c36ec675afda017dd51c4ebecc1ed6f5.png

加载 license 文件

dcf4f24d6a51a17c90cd7b9d048e5ca0.png

HALCON 软件的运行还需要对应的 license 加密文件,可以向 MVTec 官方购买正式版或者申请试用版。

然后,可以直接在 SOM 界面中加载 license 文件,点击上图中的红色按钮,可以打开下方界面进行 license 文件的安装和管理,将 license 文件直接拖入即可。

最后,在 Windows 桌面上找到 HALCON 集成开发环境 HDevelop 软件图标,即可正常使用 HALCON。

3.2

安装 OpenVINO™ 2021.4 LTS

请到 OpenVINO™ 官网下载并安装 OpenVINO™ 2021.4.2,如下图所示。

OpenVINO™ 官网:

https://www.intel.cn/content/www/cn/zh/developer/tools/openvino-toolkit/download.html?VERSION=v_2023_2_0&OP_SYSTEM=MACOS&DISTRIBUTION=ARCHIVE

01159f0353dd899eed6963d13424d929.png

安装完毕后,请将 OpenVINO™ 运行时库的路径添加到 Windows 的环境变量 path 中。

第一步,运行:

C:\Program Files (x86)\Intel\openvino_2021.4.752\bin\setupvars.bat
path

左滑查看更多

获取 OpenVINO™ 运行时库的路径,如下图所示:

cf7be4be742a25532fa0384be2f25f38.png

第二步,将 OpenVINO™ 运行时库的路径添加到环境变量 path 中,如下图所示:

4b1f93fdff5bb3bc186b0cb8a555680e.png

到此,下载并安装 OpenVINO™,然后将 OpenVINO™ 运行时库的路径添加到 Windows 环境变量 path 中的工作全部完成。

注意:若您电脑所使用的 CPU 包含了集成显卡,请在 BIOS 中把集成显卡禁用掉。

04

编写 HALCON AI 推理程序

4.1

 HALCON AI 推理程序工作流程

关于 HALCON AI 推理程序工作流程,以 HALCON 的深度学习图像分类为例,程序代码为 HALCON 集成开发环境 HDevelop 的开发语言。

1. 读取已训练完成的深度学习模型和预处理参数:

* Read in the model and Param.
read_dl_model (RetrainedModelFileName, DLModelHandle)
read_dict (PreprocessParamFileName, [], [], DLPreprocessParam)

左滑查看更多

2. 导入推理图像并生成深度学习样本:

* Read the images of the batch.
read_image (ImageBatch, Batch)
* Generate the DLSampleBatch.
gen_dl_samples_from_images (ImageBatch, DLSampleB atch)

左滑查看更多

3. 对深度学习样本进行预处理以匹配模型:

* Preprocess the DLSampleBatch.
preprocess_dl_samples (DLSampleBatch, DLPreprocessParam)

左滑查看更多

4. 执行深度学习推理:

* Apply the DL model on the DLSampleBatch.
apply_dl_model (DLModelHandle, DLSampleBatch, [], DLResultBatch)

左滑查看更多

5. 处理结果数据:

get_dict_tuple (DLResult, 'bbox_length2', BboxLength2)
get_dict_tuple (DLResult, 'bbox_phi', BboxPhi)
get_dict_tuple (DLResult, 'bbox_class_id', BboxClasses)

左滑查看更多

6. 显示结果

dev_display (RectangleSelected)
dev_disp_text (TextResults, 'window', 'top', 'left', BboxColorsResults, 'box', 'false')

左滑查看更多

4.2

HALCON AI 加速器接口 (AI²)

bf4b28bcc1ce585a49085088f101df6e.png

MVTec 的 OpenVINO™工具套件插件基于全新 HALCON AI 加速器接口 (AI²)。通过这一通用接口,客户可以快速方便地将支持的 AI 加速器硬件用于深度学习应用的推理环节。

这些特殊设备不仅在嵌入式环境中得到广泛应用,也越来越多地出现在 PC 环境中。AI 加速器接口从特定硬件中抽象出深度学习模型,因而特别能够适应未来发展。

MVTec 作为机器视觉软件的技术领导者,其软件可以在工业物联网环境中,通过使用 3D 视觉、深度学习和嵌入式视觉等现代技术,实现新的自动化解决方案。

除 MVTec 提供的插件外,还可以集成客户特定的 AI 加速器硬件。此外,不仅典型深度学习应用可以通过 AI² 加速,所有集成深度学习功能的“经典”机器视觉方法,例如 HALCON 的 Deep OCR,也能从中受益。

4.3

使用 DLT 工具

进行深度学习模型的数据标注和训练

DeepLearningTool(DLT)是 MVTec 推出的一款用于深度学习标注和训练的免费工具。使用深度学习工具,您可以凭借直观的用户界面轻松地标记数据,而无需任何编程知识。可以将这些数据无缝集成到 HALCON 中,以执行基于深度学习的物体检测,分类,语义分割,实力分割,异常值检测以及 Deep OCR。

以下是我们使用DLT进行例程中模型标注和训练的视频:

使用 DLT 标注并训练实例分割模型:

https://www.bilibili.com/video/BV1VG4y1s7jc/?spm_id_from=333.999.0.0&vd_source=c13b8c73b857c15ee023d89807943e11

4.4

HALCON 基于 OpenVINO™ 的 AI 推理范例程序

本文中,我们使用的是基于 HALCON 的深度学习对象检测的官方范例程序。

本文中所使用的基于 OpenVINO™ 的 HALCON 范例代码已分享到 MVTec 官网,网址为:

MVTec 官网:

https://www.mvtec.com/cn/technologies/deep-learning/ai-accelerator-interface

下载后将该程序保存至任意路径下。

如果推理需要加载重新训练的深度学习模型和预训练参数,需要使用 HALCON 的开发环境 Hdevelop 先运行官方路径

%HALCONEXAMPLES%/hdevelop/Deep-Learning/Detection/

的范例程序,从而可以完成训练并保存模型:

dl_detection_with_orientation_workflow.hdev

等待训练和测试程序运行完成后,会在相应路径下保存训练好的模型(model_best.hdl)和图片预处理的参数(DLPreParam.hdict),可以去替换范例程序里的文件。

打开下载好的示例程序,本地路径下对应的模型和预处理参数,如以下代码所示:

RetrainedModelFileName:='model_best.hdl'
PreprocessParamFileName:='DLPreParam.hdict'

左滑查看更多

例程中用到的演示图片是 HALCON 数据集中的screws 文件夹,如果 HALCON 安装正确的话,是在 HALCONEXAMPLES 路径中的,直接使用下面代码可以找到。

list_image_files ('screws', 'default', [], ImageFiles)

左滑查看更多

接着运行范例(或按 F5),首先需要查询 HALCON 所支持的 OpenVINO™ 设备:

* This example needs the HALCON AI²-interface for the Intel® Distribution of the OpenVINO™ Toolkit * and a installed version of the Intel® Distribution of the OpenVINO™ Toolkit.
query_available_dl_devices ('ai_accelerator_interface', 'openvino', DLDeviceHandlesOpenVINO)

左滑查看更多

之后,继续执行程序,在可视化界面会依次显示所有查询到的 OpenVINO™ 设备信息,包括本文所需使用的英特尔® Arc™ A770 独立显卡,这里我们看到支持的推理精度有 FP32 和 FP16,如下所示。

e69e5899f694624552740aa42bb9ffdb.png

然后,需要选择 OpenVINO™ 设备,目前 HALCON AI²接口所支持的 OpenVINO™ 设备包括英特尔的CPU,GPU,HDDL 以及 MYRIAD。在安装 HALCON 时,只内置安装了 CPU 插件,需要额外安装 OpenVINO™ 工具套件来支持 GPU 等其他设备,具体安装参考章节 1.3.2。这里我们指定 OpenVINO™ 运行设备为“GPU”,即英特尔的独立显卡,如果要选择其他 OpenVINO™ 设备,可以修改设备序号以选择对不同的设备通道。

* Choose a OpenVINO device
DLDeviceOpen :=DLDeviceHandlesOpenVINO[3]
set_dl_model_param (DLModelHandle, 'device', DLDeviceOpen)

左滑查看更多

此处程序,会针对设备做推理优化,得到经过 OpenVINO™ 加速优化的推理模型。如果没有额外设置,精度上使用的是默认的 float32。

本次例程没有使用 C# 或者 C++ 来联合编程和编写界面,全部在 HALCON 中完成;需要按照例程中的说明文字调节下 HDevelop 中调节下窗口显示;确认调节完成后再次按下 F5,例程循环运行至结束。

得到的显示界面和结果如下图所示:

4e8858c01aed4e2198ace96c788d88c7.png

图片中可以看到算法准确地找到了 背景上物体地位置和方向,也标注了对应地类别。在结果显示地部分可以看到检测地数据结果,比如每个类别的得分,种类,详细的坐标和角度。同事在图片的右上角中,可以看到使用 OpenVINO™ 加速后的算法运行速度,每张图片的算法运行时间在 15~19ms 左右;基本能够满足高节拍生成的需求。

此外,例程中为了增强演示效果,在某些图片处理结果后增加了等待延时,主要是用于显示。

推理的工作流程可以参考 4.1 章节,在执行推理的同时,可以打开任务管理器,观察英特尔® 独立显卡的运行状态。范例中,默认使用 FP32 精度加速推理,也可以根据具体需要切换成 FP16 精度进行对比测试。

f1588596920c03e7ba99c00774ec56fe.png

在英特尔® A380显卡上,也有明显的加速性能

212979f43a079ea9f847047076687a8c.jpeg

05

总结

MVTec HALCON AI 加速器接口(AI²)可帮助 MVTec 软件产品用户充分利用与 OpenVINO™ 工具套件兼容的 AI 加速器硬件。如此一来,对于关键工作负载,可以在英特尔计算设备上明显缩短深度学习推理时间。

由于支持硬件范围得到扩展,用户现在可以充分利用各种英特尔设备的性能来加速深度学习应用,不再局限于少数特定设备。同时,这种集成可以无缝进行,不受特定硬件细节约束。现在只需更改参数,即可在 OpenVINO™ 工具套件支持的设备上执行现有深度学习应用的推理过程。

OpenVINO™

--END--

你也许想了解(点击蓝字查看)⬇️➡️ OpenVINO™ 2023.2 发布:让生成式 AI 在实际场景中更易用➡️ 开发者实战 | 介绍OpenVINO™ 2023.1:在边缘端赋能生成式AI➡️ 基于 ChatGLM2 和 OpenVINO™ 打造中文聊天助手➡️ 基于 Llama2 和 OpenVINO™ 打造聊天机器人➡️ OpenVINO™ DevCon 2023重磅回归!英特尔以创新产品激发开发者无限潜能➡️ 5周年更新 | OpenVINO™  2023.0,让AI部署和加速更容易➡️ OpenVINO™5周年重头戏!2023.0版本持续升级AI部署和加速性能➡️ OpenVINO™2023.0实战 | 在 LabVIEW 中部署 YOLOv8 目标检测模型➡️ 开发者实战系列资源包来啦!➡️ 以AI作画,祝她节日快乐;简单三步,OpenVINO™ 助你轻松体验AIGC
➡️ 还不知道如何用OpenVINO™作画?点击了解教程。
扫描下方二维码立即体验 
OpenVINO™ 工具套件 2023.2

点击 阅读原文 立即体验OpenVINO 2023.2

366b6dde62fe582304f9825645066120.png

文章这么精彩,你有没有“在看”?

根据引用\[1\]和引用\[2\],在使用Halcon深度学习模型时,可以通过设置训练参数来控制模型的训练效果和推理时间。其中,参数包括模型、训练模型的时期数、传递给下一个模型评估的时间、是否显示训练进度、随机种子等。可以根据具体需求来调整这些参数。 另外,根据引用\[3\],可以使用create_dl_train_param函数在数据集上训练一个基于深度学习的模型,并通过train_dl_model函数进行训练。在训练过程中,可以设置训练参数,如批量大小(batch_size)和学习率(learning_rate),以控制训练的速度和效果。 对于推理时间长的问题,可能有多种原因。一种可能是模型的复杂度较高,导致推理过程需要较长的时间。另一种可能是在训练过程中没有充分优化模型的参数,导致模型推理时效率较低。 为了解决推理时间长的问题,可以尝试以下方法: 1. 调整模型的复杂度,例如减少模型的层数或参数量,以提高推理速度。 2. 优化模型的训练参数,例如增加训练时期数、调整学习率等,以提高模型的性能和效率。 3. 使用硬件加速技术,如GPU加速,以提高模型推理速度。 4. 对模型进行剪枝或量化等优化技术,以减少模型的计算量和内存占用,从而提高推理速度。 综上所述,通过调整模型的训练参数、优化模型的复杂度和使用硬件加速等方法,可以尝试提高Halcon深度学习模型推理速度。 #### 引用[.reference_title] - *1* *2* *3* [Halcon深度学习总结](https://blog.csdn.net/Douhaoyu/article/details/125278560)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值