DeepSeek 模型在 英特尔锐炫™ 显卡上的高效推理实践

点击蓝字

关注我们,让开发变得更有趣

OpenVINO™

随着人工智能技术的迅猛发展,大规模语言模型(LLMs)在自然语言处理、内容生成和智能对话等领域的应用日益广泛。国产 AI 大模型 DeepSeek 凭借其强大的生成能力和广泛的应用场景,迅速成为业界焦点。

目前,我们已经在英特尔® 酷睿™ 处理器与英特尔锐炫™ 显卡组成的硬件配置上,完成对大模型推理的验证,为 AI 模型的部署和推理提供了强有力的支持。

ee1d2e9395cdd8aa60e8280a1e29eaca.png

26f7eac0ce53eeedc71589d76cb80c63.png

86b4245b97cb4637aec1bfe632c0db3c.png

0427c164c01f7873cb240c36ba9b28a9.png

本文将带您深入了解如何在英特尔平台上高效部署 DeepSeek 模型,充分发挥其潜力,助力 AI 应用的快速落地。

OpenVINO™

硬件配置

GPU: 英特尔锐炫™ B580 12G

OpenVINO™

BIOS 配置

安装英特尔锐炫™显卡后,必须在 BIOS 中启用 PCIe 可重设 BAR(Base Address Register)。

OpenVINO™

操作系统和驱动程序安装

3.1 Ubuntu* 24.10 操作系统安装

以下是下载和安装 Ubuntu 24.10 的步骤:

1) 下载并安装 Ubuntu 24.10

wget https://releases.ubuntu.com/24.10/ubuntu-24.10-desktop-amd64.iso

2)关闭 Ubuntu 无人值守升级,以避免未经验证的内核更新。

登录 Ubuntu 后,设置屏幕永不锁定并启用自动登录。

  • Setting->Power->Power Saving->Screen Blank->Never

   设置 -> 电源 -> 节能 -> 屏幕空白 -> 从不

  • System->Users->Automatic Login

   系统 -> 用户 -> 自动登录

sudo systemctl disable --now unattended-upgrades

然后编辑/etc/apt/apt.conf.d/20auto-upgrades,将Unattended-Upgrade设置为 “0”。

3)检查内核版本是否为 6.11.

$ uname -a
Linux benchmark-Z590-VISION-D 6.11.0-8-generic #8-Ubuntu SMP PREEMPT_DYNAMIC Mon Sep 16 13:41:20 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux

4)重新启动设备,查看显示是否正常工作。

3.2 英特尔客户端 GPU

驱动程序安装(ARC B 系列)

参考:

https://dgpu-docs.intel.com/driver/client/overview.html#installing-client-gpus-on-ubuntu-desktop-24-10

3.2.1 在 Ubuntu Desktop 24.10 上

安装客户端 GPU

使用以下命令安装 intel-graphics PPA 和必要的计算与媒体包:

sudo apt-get update
sudo apt-get install -y software-properties-common


# Add the intel-graphics PPA for 24.10
sudo add-apt-repository -y ppa:kobuk-team/intel-graphics


# Install the compute-related packages
sudo apt-get install -y libze-intel-gpu1 libze1 intel-ocloc intel-opencl-icd clinfo intel-gsc hwinfo


# Install the media-related packages
sudo apt-get install -y intel-media-va-driver-non-free libmfx1 libmfx-gen1 libvpl2 libvpl-tools libva-glx2 va-driver-all vainfo

安装完毕后,请启动“命令提示符”,然后输入 “dotnet --info” 指令,验证安装是否成功:

上述命令安装了大多数用户所需的所有基本包,旨在尽量减少不必要的包安装。

请注意,不同版本的 intel-opencl-icd 可能会有不同的性能表现。

3.2.2 配置渲染组成员资格

要访问 GPU 功能,当前用户必须能够访问 /dev/dri 中的 DRM 渲染节点。

如果当前用户不是 DRM 渲染节点(通常为 'render')组的成员,请将用户添加到渲染节点组。

sudo gpasswd -a ${USER} render

这对更新后创建的 shell 就足够了。要更改当前 shell 的组 ID:

newgrp render

3.3 验证英特尔锐炫™ B580 PCIe 配置空间

确保英特尔锐炫™ B580 PCIe 配置空间具有 12GB 的 BAR2。以下是检查 GPU PCIe 配置空间的指南:

步骤 1:列出 VGA 设备的 PCIe 总线地址。

lspci | grep -i vga

您将在屏幕上看到这些消息:

0562bc841521a500c05075d105c22044.png

步骤 2:检查英特尔锐炫™ B580 的 PCIe 功能。

sudo lspci -s 03:00 -vvv | grep BAR

您将看到英特尔锐炫™ B580 的 PCIe 功能,并检查 PCIe 配置空间。

OpenVINO™

OpenVINO™ 和基准测试工具安装

OpenVINO™ 是一个开源工具包,用于优化和部署从云到边缘的深度学习模型。它加速了各种用例的深度学习推理,如生成式 AI、视频、音频和语言,支持来自流行框架(如 PyTorch、TensorFlow、ONNX 等)的模型。转换和优化模型,并部署在混合的英特尔® 硬件和环境中,无论是在本地、设备上、浏览器中还是云端。

OpenVINO™ GenAI 是 OpenVINO™ 的一个变体,旨在简化生成式 AI 模型的推理运行。它隐藏了生成过程的复杂性,并最大限度地减少了所需的代码量。

使用以下命令快速安装 OpenVINO™ 和工具。

git clone https://github.com/openvinotoolkit/openvino.genai.git


cd ./tools/llm_bench


python3 -m venv python-env


source python-env/bin/activate


pip install --upgrade pip


pip install -r requirements.txt

更多详情请参考 openvino.genai/tools/llm_bench at master · openvinotoolkit/openvino.genai · GitHub

https://github.com/openvinotoolkit/openvino.genai/tree/master/tools/llm_bench

OpenVINO™

运行 DeepSeek 蒸馏模型的基准测试

5.1 下载预训练的 LLM 模型

访问:

https://huggingface.co 或 https://www.modelscope.cn

下载 deepseek 蒸馏模型,并将下载的模型保存在 ~/models 文件夹中。

5.2 将模型转换为 OpenVINO™ IR

运行以下命令将 DeepSeek-R1-Distill-Qwen-7B 转换为 IR 格式并将权重压缩为 INT4。您的系统必须至少具有 64GB 内存才能进行转换。

optimum-cli export openvino --framework pt 
-m ./DeepSeek-R1-Distill-Qwen-7B --weight-format int4 –sym 
--trust-remote-code --task 
text-generation-with-past ./DeepSeek-R1-Distill-Qwen-7B-IR

5.3 使用 OpenVINO™ 启动 LLM 基准测试

要在 B580 上启动 LLM 模型 DeepSeek-R1-Distill-Qwen-7B 的基准测试,请运行以下命令:

python3 benchmark.py -m DeepSeek-R1-Distill-Qwen-7B-IR -n 1 -d GPU
python benchmark.py -m DeepSeek-R1-Distill-Qwen-7B-IR -p "What is openvino?" -n 1 -d GPU

测试结果将显示在屏幕上。请注意,结果可能因平台和软件版本而异。

OpenVINO™

通过本文的详细步骤和配置指南,我们成功在英特尔平台上验证了 DeepSeek 蒸馏模型的推理性能。从硬件配置、BIOS 设置、操作系统安装到驱动程序和 OpenVINO™ 工具的部署,每一步都确保了系统发挥更卓越的性能。

通过基准测试,我们展示了 DeepSeek-R1-Distill-Qwen 系列模型在 INT4 精度下的高效推理能力,尤其是在首个 token 和后续 token 的延迟表现上,展现了英特尔锐炫™ 显卡在处理大模型推理任务时的强大潜力。英特尔锐炫™ B580能够为AI工作负载提供加速,其配备的英特尔Xe矩阵计算引擎(XMX),为新推出的XeSS 2提供强大支持。OpenVINO™ 工具套件可以缩短延迟,提高吞吐量,加速 AI 推理过程,同时保持精度,缩小模型占用空间,优化硬件使用。

未来,随着硬件和软件的进一步优化,我们期待在更多复杂场景中,特别是在生成式 AI 和大规模语言模型的应用中,验证和英特尔锐炫™ 显卡的性能,通过英特尔丰富的软硬件产品协同,为 DeepSeek 及各种 AI 大模型的应用提供更强大的算力,让边缘侧部署 AI 的使用场景有更多可能。

OpenVINO™

---------------------------------------

*OpenVINO and the OpenVINO logo are trademarks of Intel Corporation or its subsidiaries.

-----------------------------

 OpenVINO 中文社区 

微信号 : openvinodev

B站:OpenVINO中文社区

“开放、开源、共创”

致力于通过定期举办线上与线下的沙龙、动手实践及开发者交流大会等活动,促进人工智能开发者之间的交流学习。

○ 点击 “ 在看 ”,让更多人看见

### 安装和配置 Stable Diffusion on Intel Arc B580 #### 准备工作 为了确保Stable Diffusion能够在配备Intel Arc B580显卡的设备上顺利运行,需先访问Intel官方支持网站上的WHQL认证驱动程序页面,获取并安装最新的、针对Arc系列独立显卡优化过的驱动软件[^1]。 #### 下载 Stable Diffusion WebUI 前往GitHub仓库`openvinotoolkit/stable-diffusion-webui`,这里提供了专门适配于Intel硬件平台(包括CPU与GPU)版本的Stable Diffusion应用。用户既可以选择通过Git命令行工具克隆项目至本地环境,也能够直接从网页端下载压缩文件形式发布的最新稳定版,并将其解压放置于个人计算机中的任意位置以便后续操作[^2]。 #### 配置环境变量及依赖项 由于该应用程序基于Python开发而成,在实际部署之前还需要完成一系列准备工作: - **创建虚拟环境**:建议新建一个隔离化的Python解释器实例来管理此次项目的各类库文件; ```bash python3 -m venv ./venv_stablediffusion source ./venv_stablediffusion/bin/activate # Linux/MacOS下激活方式;Windows请参照对应指令集执行 ``` - **安装必要的Python包**:依据README文档指示,利用pip工具批量导入所需的第三方模块 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu pip install -r requirements.txt ``` 请注意上述PyTorch安装链接指向的是仅含CPU支持的二进制分发版,这是因为当前阶段OpenVINO框架下的模型转换流程尚未完全兼容带有CUDA加速特性的GPU实现方案。对于想要充分利用Intel Arc图形处理单元性能优势的情况,则可能涉及到更复杂的移植过程以及额外的技术考量因素。 #### 启动服务 当一切准备就绪之后,只需简单地调用启动脚本即可让Web界面正常运作起来,从而允许使用者借助浏览器轻松访问图像生成功能。 ```bash python webui.py ``` 此时应能在终端输出中看到监听地址信息,默认情况下会绑定到localhost:7860端口之上等待客户端连接请求的到来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值