深度剖析数据在内存中的存储
一. 数据类型介绍
前面我们已经学习了基本的内置类型:
char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数
//C语言没有字符串类型
以及他们所占存储空间的大小。
- 类型的意义:
-
- 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
-
- 如何看待内存空间的视角。
1.类型的基本归类:
整形家族:
//字符在内存中存储的是字符的ASCII码值,ASCII码值是整型,所以字符类型归类到整型家族中
char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
- char是否是有signed char C语言标准并没有规定,取决于编译器
- 而int,short,long,默认的都是有符号的
浮点数家族:
float
double
long double//有些有这个
构造类型:
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
指针类型:(自定义类型)
int *pi;
char *pc;
float* pf;
void* pv;//无具体类型指针
空类型:
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
2. 整形在内存中的存储
一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
①原码、反码、补码
- 三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
//原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
//反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
//补码
反码+1就得到补码
补充:
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
②大小端介绍
什么大端小端
- 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
- 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,保存在内存的高地址中;
为什么有大端和小端
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
百度2015年系统工程师笔试题:
- 请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
int check()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
练习
1.
//输出什么?
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
2.
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
3.
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n",a);
return 0;
}
4.
int i= -20;
unsigned int j = 10;
printf("%d\n", i+j);
//按照补码的形式进行运算,最后格式化成为有符号整数
5.
unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}
6.
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));
return 0;
}
7.
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}
//死循环打印hello world
3. 浮点型在内存中的存储
- 常见的浮点数:
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义
①一个例子
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
②浮点数存储规则
- 根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S*M*2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
M表示有效数字,大于等于1,小于2
2^E表示指数位
![在这里插入图片描述](https://img-blog.csdnimg.cn/c8cee0d0fe104fc4b8b760d0436f2fb4.png)
- 举例来说
-
IEEE 754规定:
-
对于32的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M
-
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M
-
IEEE 754对有效数字M和E,还有一些特别规定
-
前面说过,1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
-
IEEE 754规定,计算机内部保存M时,默认这个数的第一位总算是1,因此可以被舍去,只保存后面xxxxxx部分。
-
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
-
至于指数E,情况就比较复杂。
-
首先,E为一个无符号整数(unsigned int)
-
这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。
-
但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。
-
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
-
然后,指数E从内存中取出还可以再分成三种情况:
-
E不全为0或不全为1
-
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
-
比如:
-
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000
-
E全为0
-
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
-
E全为1
-
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);