简介
关联分析为了寻找数据各个特征之间的关联影响关系。关联关系并不是因果关系,它表示的是特征A出现与特征B出现之间的影响关系。关联分析通常可以分为关联规则(Association Rules)与序列模式(Sequence Pattern Mining)。其中,序列模式算法中最基本的是AprioriAll算法。
一句话解释版本:
序列模式就是有时间顺序概念的关联规则。
数据分析与挖掘体系位置
序列模式是一种无监督学习方法,其在整个数据分析与挖掘体系中的位置如下图所示。
序列模式的理念
关联规则(Apriori算法)只能衡量X与Y之间的影响力大小。这种影响与时间、顺序是无关的。我们只考虑购买牛奶与购买面包的关系,但是不会考虑购买的先后顺序与购买的时间。举例来说,在关联规则中,如果一个项集为[牛奶,面包,裙子],这个购买行为是不具有任何顺序与时间观念的。
但是序列模式不同,它是具有先后顺序概念的。也就是说,它能够考察:我在之前的购买中买了牛奶,之后的购买行为中我更有可能买面包。序列模式的挖掘带入了时间次序的概念。
序列模式的处理单元
在上一章说过:
在关联规则中,一个记录是一个项集,[牛奶ÿ