4.3.2无监督学习(四) - 序列模式与AprioriAll算法

本文介绍了序列模式在无监督学习中的应用,强调了它与关联规则的区别,特别是在考虑时间顺序上的影响。AprioriAll算法作为序列模式挖掘的基础,通过设定最小支持度阈值来筛选频繁序列,其工作原理包括对原始数据排序和筛选过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

关联分析为了寻找数据各个特征之间的关联影响关系。关联关系并不是因果关系,它表示的是特征A出现与特征B出现之间的影响关系。关联分析通常可以分为关联规则(Association Rules)与序列模式(Sequence Pattern Mining)。其中,序列模式算法中最基本的是AprioriAll算法。

一句话解释版本:

序列模式就是有时间顺序概念的关联规则。

数据分析与挖掘体系位置

序列模式是一种无监督学习方法,其在整个数据分析与挖掘体系中的位置如下图所示。

 

序列模式的理念

关联规则(Apriori算法)只能衡量X与Y之间的影响力大小。这种影响与时间、顺序是无关的。我们只考虑购买牛奶与购买面包的关系,但是不会考虑购买的先后顺序与购买的时间。举例来说,在关联规则中,如果一个项集为[牛奶,面包,裙子],这个购买行为是不具有任何顺序与时间观念的。

但是序列模式不同,它是具有先后顺序概念的。也就是说,它能够考察:我在之前的购买中买了牛奶,之后的购买行为中我更有可能买面包。序列模式的挖掘带入了时间次序的概念。

 

序列模式的处理单元

在上一章说过:

在关联规则中,一个记录是一个项集,[牛奶ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值