计算机组成原理数据校验之奇偶校验,海明校验

文章内容基于:计算机组成原理_华中科技大学_中国大学MOOC(慕课) (icourse163.org)

仅作为日常学习的笔记整理

目录

一. 数据校验的基本原理

1.数据校验的必要性

2.数据校验的基本原理

 3.码距的概念

4.码距与检错纠错能力的关系

 5.选择码距要考虑的因素

二.奇偶校验

1.奇偶校验基本原理

2.奇偶校验的特点

3.奇偶校验的改进

三.海明校验

1.海明校验基本原理

2.海明码校验举例​编辑

 3.海明码检错与纠错举例

 4.海明码校验特点分析​编辑


一. 数据校验的基本原理

1.数据校验的必要性

 

2.数据校验的基本原理

给有效信息增加冗余码即校验信息,数据发送和接收时由有效信息和校验信息组成

 

 3.码距的概念

①注意是任意合法编码间不同二进制数位数的最小值

②冗余项增多=>码距增大=>检错和纠错能力提高

4.码距与检错纠错能力的关系

 

个人总结的计算方法:

①先算 纠错=(码距-1)/2

②后算 检错=码距-t-1

③注意码距为3时比较特殊

 5.选择码距要考虑的因素

 

二.奇偶校验

1.奇偶校验基本原理

偶校验生成的校验码P=数据各个位上的值依次异或

奇校验生成的校验码P=偶校验取反

检错码G=校验码P和数据的各个位的值依次异或

G=P\oplusP时结果为0,也就是数据正常时,检错码为0,数据出错也就是P!=P,检错码为1

 

2.奇偶校验的特点

3.奇偶校验的改进

 

 

三.海明校验

1.海明校验基本原理

 

海明码的数据位和校验位分布是非线性的,校验位位于第2^{i-1}(i=1,2,3...,r)位,其余位依次放置被校验的数据位.显然,分布为1,2,4,8,16,32...

我们可以通过k+r<=2^{r}-1得出k为有效信息需要多长的校验信息

①海明码的每一位数据位都至少被两个校验位校验

②可以采用奇偶校验计算出检验位的值,Pi等于所有被第i个检验码检验的数据位异或

③算出指错字的值 ,G=Pi\oplus(Pi对应的被检验的数据位)

④GnGn-1...G1全为0则没有错误,反之指错字对应的十进制数则指出了出错的位置

2.海明码校验举例

 

 3.海明码检错与纠错举例

 4.海明码校验特点分析

 

 

b1,b2同时错不会改变校验码的奇偶性,所以无法检测

改进方法:增加一位奇偶校验位

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OrientalGlass

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值