题目描述
某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
输入输出格式
输入格式:
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0 0
输出格式:
输出最大的快乐指数。
输入输出样例
输入样例#1:
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出样例#1:
5
【题目分析】
首先这是一颗树,我们考虑一下根节点,如果他去的话,他的下属都不能去,如果他不去,他的下属可以去也可以不去,我们用dp[i][j]表示i号人,j==0表示不去,j==1表示要去。那么这样就得到了动态转移方程,dp[i][1]+=dp[children][0]+r[i];dp[i][0]+=max(dp[children][0],dp[children][1]);
然后我们用递归的方式进行计算,需要在计算之前判断一下是否是空的,vector非常好用
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
struct node{
int fa;
vector <int> v;
}t[200001];
int r[200001];
int root;
int dp[200001][2]; //0 不去 1 去
inline int max(int a,int b)
{return a>b?a:b;}
inline void dpp(int now)
{
vector<int>::iterator it;
if(!t[now].v.empty())
for (it=t[now].v.begin();it!=t[now].v.end();++it)
{
dpp(*it);
dp[now][1]+=dp[*it][0];
dp[now][0]+=max(dp[*it][1],dp[*it][0]);
}
dp[now][1]+=r[now];
}
int main()
{
int n;
scanf("%d",&n);
for (int i=1;i<=n;++i) scanf("%d",&r[i]);
int a,b,ans=0;
for (int i=1;i<=n-1;++i) {scanf("%d%d",&a,&b);t[a].fa=b,t[b].v.push_back(a);}
for (int i=1;i<=n;++i)if (!t[i].fa) {dpp(i); ans+=max(dp[i][0],dp[i][1]);}
printf("%d\n",ans);
}