简单学点大模型-Task11 大模型对环境的影响 本文根据datawhale 2023年9月的学习项目 简单学点大模型 做的笔记。本章主要介绍了大模型训练和推理时产生的碳排放对环境的影响,即碳排放成本。根据NVIDIA的统计分析结果,80%的ML工作负载是推理,而不是训练。碳排放量的计量单位为kgCO2eq,我们使用碳强度(Carbon intensity)这一指标来表示使用每千瓦时能源排放的碳量(kgCO2eq/kWh)。两种估算训练模型的碳排放量的算法。
简单学点大模型-Task09 新的模型架构 MoE不同于一般的神经网络,通常最主要是由专家网络和门控网络所构成的。它根据数据进行分离训练多个模型,各个模型被称为专家。门控网络,就是指得到每个专家的权重的这个函数,用于选择使用哪个专家,模型的实际输出为各个模型的输出与门控模型的权限组合。各个专家模型可采用不同的函数(各种线性或非线性函数)。混合专家系统就是将多个模型整合到一个单独的任务中。
简单学点大模型-Task05 大模型法律问题 本文根据datawhale 2023年9月的学习项目 简单学点大模型 做的笔记。人工智能发展带来的法律和社会伦理相关的问题主要包括以下3个方面:大模型与知识产权、大模型与隐私、大模型的技术滥用。
简单学点大模型-Task01 1、语言模型是文本单元(token)序列的概率分布p语言模型(LM)的经典定义是一种对文本单元(token)的概率分布。在大型语言模型中,"token"是指文本中的一个最小单位。通常,一个token可以是一个单词、一个标点符号、一个数字、一个符号等。假设我们有一个文本单元的词汇表V。语言模型p为每个token序列分配一个概率(0~1),就形成一个概率分布直观上,一个好的语言模型应具有语言能力和世界知识。假设给定词汇表{ate, ball, cheese, mouse, the}
【打卡】高效使用ChatGPT:构建有效的Prompt ChatGPT是一个基于OpenAI的GPT(Generative Pre-trained Transformer)模型的变种,它是一个强大的自然语言处理(NLP)工具。GPT系列模型的主要特点是预训练和生成能力,能够根据输入的文本生成具有连贯性和合理性的输出文本。ChatGPT特别针对对话式应用进行了优化。它经过在大规模文本数据上进行预训练,并通过阅读大量的对话数据来学习对话风格和语言表达。因此,它可以用于许多自然语言处理任务,如对话生成、问答系统、文本摘要、语言翻译等。
任务8:ChatGPT文本匹配 6、“什么品牌的智能手机好用”和“现在什么牌子的智能手机好用,又便宜呀”的皮尔逊相关系数:0.95,标签相关性:1。6、“什么品牌的智能手机好用”和“现在什么牌子的智能手机好用,又便宜呀”的相似度:0.84,标签相关性:1。2、“在淘宝去哪里充值好”和“在淘宝里怎么买火车票,哪里有”的皮尔逊相关系数:0.84,标签相关性:1。”和“七夕单身的人怎么过?2、“在淘宝去哪里充值好”和“在淘宝里怎么买火车票,哪里有”的相似度:0.54,标签相关性:0。”和“七夕一个人怎么过”的相似度:0.95,标签相关性:1。
任务7:ChatGPT渲染表格 使用markdown格式生成表格,表头2列:第1列是空列,F1、Recall 一共3行,每一行第1列是class+id,按照id从高到低排序(class2、class1、class0)。第2列是对应的f1-score值,第3列是recall值。输入表格,表头 :precision、recall、f1-score、support。
任务6:ChatGPT关系抽取 最终,在使用思维链推理的提示下,ChatGPT正确推理出王小蒙和谢永强的情侣关系。如果人名B是人名A的父亲,且人名A是男性,则输出:人名A - 父子 - 人名B。如果人名C是人名A的母亲,且人名A是男性,则输出:人名A - 母子 - 人名C。如果人名A和人名B是夫妻,则输出:人名A - 夫妻 - 人名B。如果人名A和人名B是兄弟,则输出:人名A - 兄弟 - 人名B。如果人名A是人名B的妹妹,则输出:人名A - 兄妹 - 人名B。请根据以下文本,抽取人名和人名之间的关系。识别文本中与香秀相关的人名和关系。
任务5:ChatGPT实体抽取 食物:山药、豌豆、胡萝卜、葱姜末、小米椒碎、盐、鸡精 时间:几分钟、两分钟 动作:去皮洗净、切成小丁、用水浸泡、豌豆剥好、冲洗干净、胡萝卜去皮洗净、切成小丁、葱姜末准备好、小米椒碎准备好、加水,煮开、放入少许盐、倒入豌豆、煮几分钟,至豌豆断生、煮好后捞出沥干水分、另起锅加油、烧热后倒入姜末、小米椒碎爆锅、再倒入胡萝卜、山药翻炒、炒两分钟、最后倒入豌豆翻炒均匀、再加入盐、鸡精、葱末翻炒几下、出锅。豌豆剥好,冲洗干净。最后倒入豌豆翻炒均匀,再加入盐、鸡精、葱末翻炒几下,就可以出锅了,很好吃下饭香,快尝尝吧。
任务4:ChatGPT文本分类 {"review":"足足等了將近一個半小時,飯也基本不太熱了,因為網上付款了所以吃飯就不退送餐費,所以你們就任意遲到,我說的有錯嗎", "label":"0"}{"review":"送餐的师傅,服务质量太差,送过来都已经坨了", "label":"0"}{"review":"辣,饭冷啦,都两三小时才送来慢", "label":"0"}{"review":"还行,就是速度好慢,一个多小时", "label":"1"}{"review":"卷饼味道真的很一般", "label":"0"}
任务3:ChatGPT自动EDA 输出格式:第一行,文件中的缺失值总数量。3、编写prompt让ChatGPT输出Pandas代码来统计affairs列在yrs_married下的分布并绘制柱状图。基于上面读入的文件结果,编写Pandas代码,统计affairs列在yrs_married下的分布并绘制柱状图。基于上面读入的文件结果,编写Pandas代码,来绘制age列和yrs_married列的散点图。基于上面读入的文件结果,编写Pandas代码,统计affairs列的分布并绘制饼图。1、输出Pandas代码来统计每列缺失值。
任务1:初识ChatGPT 直观来讲,机器要找出输入E和输出T之间的函数关系,就需要确定参数,最简单的就是f(x)=ax+b中的a和b,GPT3模型有1750亿个a和b,就是通过transformer模型中的不同层Trm的迭代变换计算确定的。从数学或从机器学习的角度来看,语言模型是对词语序列的概率相关性分布的建模,即利用已经说过的语句(语句可以视为数学中的向量)作为输入条件,预测下一个时刻不同语句甚至语言集合出现的概率分布。由于chatGPT更强的性能和海量参数,它包含了更多的主题的数据,能够处理更多小众主题。
Django后端开发入门-Task05 views.py# 指定查询集(用到的数据)# 指定查询集用到的序列化容器# 对创建的对象进行序列化,并作为响应返回return Response("hello 你调用了自定义函数latest")@action是 Django REST framework 中的一个装饰器,用于将自定义函数转换为视图集的一个动作。@action。
Django后端开发入门-Task04 产品分类序列化器# 指定需要序列化的表# 指定需要序列化的字段,all表示所有模型字段都将被序列化# 产品序列化器# 外键字段相关的数据,需要单独序列化# 指定需要序列化的表# 指定需要序列化的字段,all表示所有模型字段都将被序列化# 序列化单个字段# 序列化多个字段# 序列化所有字段views.py# 从请求数据中提取字段# 使用create()方法创建新的商品对象# 对创建的对象进行序列化,并作为响应返回urls.py。