[SDOI2010]星际竞速

昨天连续做了两道网络流……这是第一道


这是道图论题是肯定的,图都给你了

那么问题在于如何建模

问题要求访问每个点恰好一次(我一开始没看到这个条件……)

要求总时间最短,尝试把问题转化为一些经典图论问题比如最短路

很可惜不行,那么自然想到网络流(组里面有句戏言叫“一切皆可网络流”,比如A+B……)

进一步分析发现单纯的网络流是不行的,需要用费用流

访问每个点恰好一次,跟路径覆盖其实有点像……

把每个星球拆成两个点,u和u'

我们对每条题目给定的边(u,v),在网络流中加一条边(u,v'),流量为1,费用为时间

然后第一次可以前往任何一个点,那么从st向v'连一条边,流量为1,费用为定位时间

从每个v'向ed连一条边,容量为1,费用为0,表示每个点的的入度为1,仅会访问一次

从st向每个u连一条边,容量为1,费用为0,以便u通过(u,v')到达v'

那么这个图的最小费用流就是答案


至今只会写EK版的费用流……速度超慢……傻×一个……

//Lib
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
using namespace std;
//Macro
#define	rep(i,a,b)	for(int i=a,tt=b;i<=tt;++i)
#define	drep(i,a,b)	for(int i=a,tt=b;i>=tt;--i)
#define	erep(i,e,x)	for(int i=x;i;i=e[i].next)
#define	irep(i,x)	for(__typedef(x.begin()) i=x.begin();i!=x.end();i++)
#define	read()	(strtol(ipos,&ipos,10))
#define	sqr(x)	((x)*(x))
#define	pb	push_back
#define	PS	system("pause");
typedef	long long	ll;
typedef	pair<int,int>	pii;
const int oo=~0U>>1;
const double inf=1e100;
const double eps=1e-6;
string name="", in=".in", out=".out";
//Var
struct E
{
	int next,node,cap,v;
}e[40008];
queue<int> q;
int n,m,st,ed,ans,tot=1;
int h[1608],dis[1608],pre[1608],epre[1608];
bool vis[1608];
void add(int a,int b,int c,int d)
{
	e[++tot].next=h[a];e[tot].node=b;e[tot].cap=c;e[tot].v=d;h[a]=tot;
	e[++tot].next=h[b];e[tot].node=a;e[tot].cap=0;e[tot].v=-d;h[b]=tot;
}
void Init()
{
	scanf("%d%d",&n,&m);
	st=n*2+1;ed=n*2+2;
	int a,b,c;
	rep(i,1,n)
	{
		scanf("%d",&c);
//		add(st,i,1,0);
		add(st,n+i,1,c);
		add(n+i,ed,1,0);
	}
	rep(i,1,m)
	{
		scanf("%d%d%d",&a,&b,&c);
		if(a>b)swap(a,b);
		add(a,b+n,1,c);
	}
}
bool SPFA()
{
	memset(dis,55,sizeof dis);
	q.push(st);dis[st]=0;
	int u,v;bool flag=false;
	while(!q.empty())
	{
		u=q.front();q.pop();vis[u]=false;
		erep(i,e,h[u])
			if(e[i].cap&&dis[v=e[i].node]>dis[u]+e[i].v)
			{
				dis[v]=dis[u]+e[i].v;
				pre[v]=u;epre[v]=i;
				if(!vis[v])q.push(v),vis[v]=true;
				if(v==ed)flag=true;
			}
	}
	return flag;
}
int Flow()
{
	int tmp,ret=0,flow=oo;
	tmp=ed;
	while(tmp!=st)
	{
		flow=min(flow,e[epre[tmp]].cap);
		ret+=e[epre[tmp]].v;
		tmp=pre[tmp];
	}
	tmp=ed;
	while(tmp!=st)
	{
		e[epre[tmp]].cap-=flow;
		e[epre[tmp]^1].cap+=flow;
		tmp=pre[tmp];
	}
	return ret*flow;
}
void Work()
{
	while(SPFA())
		ans+=Flow();
	printf("%d\n",ans);
}
int main()
{
//	freopen((name+in).c_str(),"r",stdin);
//	freopen((name+out).c_str(),"w",stdout);
	Init();
	Work();
	return 0;
}

阅读更多
相关热词
换一批

没有更多推荐了,返回首页