numpy.diag()函数使用详解

基于NumPy v1.17 使用手册,numpy.diag()函数是以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换成方阵(非对角线元素为0)。两种功能角色转变取决于输入的v。

官方文档如下:numpy.diag
在这里插入图片描述

参数解析

v : array_like

如果v是二维数组,返回k位置的对角线。
如果v是一维数组,返回一个v作为k位置对角线的二维数组。

k : int, optional

默认为0,可选参数。
对角线的位置,大于零位于对角线上面,小于零则在下面。

示例程序

>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])
>>> np.diag(np.diag(x))
array([[0, 0, 0],
       [0, 4, 0],
       [0, 0, 8]])

参考:NumPy v1.17 Manual

  • 26
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值