numpy.pad()函数使用详解

本文详细介绍了在卷积神经网络中避免图像缩小和边缘信息丢失的图像边缘填充技术,包括使用numpy.pad()函数进行填充操作的方法,以及12种不同的填充模式,如constant、edge、linear_ramp等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在卷积神经网络中,为了避免因为卷积运算导致输出图像缩小和图像边缘信息丢失,常常采用图像边缘填充技术,即在图像四周边缘填充0,使得卷积运算后图像大小不会缩小,同时也不会丢失边缘和角落的信息。在Python的numpy库中,常常采用numpy.pad()进行填充操作。

官方文档为:numpy.pad
numpy.pad(array, pad_width, mode=‘constant’, **kwargs)

参数解析

array

表示需要填充的数组。

pad_width

表示每个轴(axis)边缘需要填充的数值数目。
参数输入方式为:((before_1, after_1), … (before_N, after_N)),其中(before_1, after_1)表示第1轴两边缘分别填充before_1个和after_1个数值。

mode

表示填充的方式(取值:str字符串或用户提供的函数),总共有12种填充模式。
默认为’constant’方式填充。

**kwargs

表示关键字参数,它本质上是一个dict。
1、constant_values : sequence or scalar, optional。用于‘constant’填充方式指定的填充值。
2、stat_length : sequence or int, optional。用于 ‘maximum’, ‘mean’, ‘median’,和‘minimum’填充方式中。每个轴边缘用于计算统计量的数据个数,默认用到整个轴。
3、end_values : sequence or scalar, optional。用于 ‘linear_ramp’填充方式,设定结束值。
4、reflect_type : {‘even’, ‘odd’}, optional,默认为‘even’。

填充方式

1、‘constant’
表示连续填充相同的值,每个轴可以分别指定填充值,constant_values=(x, y)时前面用x填充,后面用y填充,缺省值填充0。

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])

2、‘edge’
用数组的边缘值填充。

np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])

3、‘linear_ramp’
表示用边缘递减的方式填充。

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])

4、‘maximum’
表示最大值填充。

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

5、‘mean’
表示均值填充。

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

6、‘median’
表示中位数填充。

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

设置统计长度。

>>> np.pad(a, (2,), 'median',stat_length=(2,3))
array([2, 2, 1, 2, 3, 4, 5, 4, 4])

7、‘minimum’
表示最小值填充。

>>> b = [[1, 2], [3, 4]]
>>> np.pad(b, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1],
       [3, 3, 3, 4, 3, 3, 3],
       [1, 1, 1, 2, 1, 1, 1],
       [1, 1, 1, 2, 1, 1, 1]])

8、‘reflect’
表示以边缘值为轴对称填充。

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

对于“odd”样式,数组的扩展部分是通过边缘值的两倍减去反射值来创建的。

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])

9、‘symmetric’
表示沿着边缘值对称填充。

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

对于“odd”样式,数组的扩展部分是通过边缘值的两倍减去反射值来创建的。

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

10、‘wrap’
表示用原数组后面的值填充前面,前面的值填充后面。

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

11、‘empty’
表示用未定义值填充,version 1.17新增。

>>> np.pad(a, (2, 3), 'empty')
array([1108, 0, 1, 2, 3, 4, 5, 0, 3, 2])

12、<function>
表示用自定义函数填充。padding_func(vector, iaxis_pad_width, iaxis, kwargs)

>>> def pad_with(vector, pad_width, iaxis, kwargs):
...     pad_value = kwargs.get('padder', 10)
...     vector[:pad_width[0]] = pad_value
...     vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
       [10, 10, 10, 10, 10, 10, 10],
       [10, 10,  0,  1,  2, 10, 10],
       [10, 10,  3,  4,  5, 10, 10],
       [10, 10, 10, 10, 10, 10, 10],
       [10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100,   0,   1,   2, 100, 100],
       [100, 100,   3,   4,   5, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100]])
<think>嗯,用户想了解matplotlib中的ax.tick_params函数的详细参数和用法。首先,我需要回忆一下这个函数的作用。记得它是用来设置坐标轴的刻度参数的,比如刻度线的样式、颜色、标签等等。不过具体有哪些参数呢? 先查一下官方文档或者已有的参考资料。根据用户提供的引用,引用[1]提到了ax.tick_params()的参数详解,还有引用[2]和引用[3]也涉及了tick的设置。可能需要从这些资料中提取相关信息。 首先,参数分为axis,可能包括x、y、both,用来指定是x轴还是y轴。然后是控制刻度线的方向,比如direction,可能的值有in、out、inout。颜色参数color,可能设置刻度线和标签的颜色。长度和宽度,length和width。还有pad,应该是标签和刻度线之间的间距。 另外,标签相关的参数,比如labelsize,设置标签字体大小,labelcolor设置颜色,labelrotation旋转角度。还有是否显示刻度线和标签,比如bottom, top, left, right来控制是否显示上下左右的刻度线和标签,而labelbottom, labeltop等控制标签的位置。 可能需要举一些例子,比如如何隐藏上边和右边的刻度线,如何调整标签的字体和颜色。同时,用户提供的引用里有关于中文显示的解决方法,比如引用[4]提到的设置字体,这可能在某些情况下和刻度标签相关,特别是当出现中文标签时,需要确保字体正确。 然后需要检查是否有遗漏的参数,比如which参数,可能用来指定主刻度还是次刻度。例如,which='major'或'minor'。还有是否同时影响网格线,比如grid_color或者grid_alpha,但不确定这些是否属于tick_params的范围。可能需要确认一下。 另外,用户提供的示例代码中,比如引用[2]里的线标记示例,虽然和tick_params无关,但可能需要确保回答中的代码示例正确使用函数。例如,调整刻度线的方向、颜色,隐藏某些刻度线等。 可能需要结构化的回答,比如分参数详解和示例两个部分。参数部分列举常用参数,每个参数说明作用,示例部分展示不同场景下的应用,比如隐藏顶部和右侧刻度线,调整标签大小和颜色,设置刻度线样式等。 还需要注意用户提到的LaTeX格式要求,行内公式用$...$,独立公式用$$...$$。不过在这个问题中可能用不到数学公式,但如果有涉及到的话需要遵守格式。 总结一下,回答的结构应该是先介绍函数的作用,然后详细参数说明,再给出示例代码,可能还需要注意事项,比如中文显示的问题,引用相关文献。最后生成相关问题,如如何自定义刻度标签,如何设置对数坐标轴,如何旋转刻度标签等。 在检查参数的时候,确保没有错误,比如是否真的有reset这个参数?可能需要查阅官方文档确认。比如,reset参数如果设置为True,可能重置所有参数为默认值,但可能不常用,所以是否要包括在常用参数里? 此外,注意用户提到的系统级指令,比如生成相关问题,需要用中文回答,正确使用引用标识。例如,在提到中文显示时引用[4],在提到刻度设置时引用[1]、[2]、[3]。 最后,确保示例代码的正确性,比如使用ax.tick_params正确设置各个参数,并给出注释说明每个参数的效果。可能还要注意代码中是否导入必要的库,比如matplotlib的pyplot模块,并创建了Figure和Axes对象。</think>### matplotlib中`ax.tick_params()`参数详解 `ax.tick_params()`用于自定义坐标轴刻度的显示方式,包括刻度线样式、标签格式等。以下为常用参数分类说明: --- #### **1. 控制目标轴** - **`axis`**:选择操作的轴,可选`'x'`、`y'`或`'both'`(默认)[^1] ```python ax.tick_params(axis='x') # 仅修改x轴 ``` #### **2. 刻度线样式** | 参数 | 说明 | 示例值 | |------------|--------------------------------------|--------------------| | `direction`| 刻度线方向(`'in'`、`'out'`、`'inout'`) | `direction='out'` | | `length` | 刻度线长度(单位:像素) | `length=8` | | `width` | 刻度线宽度 | `width=1.5` | | `color` | 刻度线颜色 | `color='red'` | #### **3. 标签样式** | 参数 | 说明 | 示例值 | |-----------------|------------------------|----------------------| | `labelsize` | 标签字体大小 | `labelsize=12` | | `labelcolor` | 标签颜色 | `labelcolor='blue'` | | `labelrotation` | 标签旋转角度(单位:度)| `labelrotation=45` | #### **4. 显示/隐藏刻度** - **`bottom`、`top`、`left`、`right`**:布尔值,控制是否显示对应位置的刻度线 - **`labelbottom`、`labeltop`、`labelleft`、`labelright`**:布尔值,控制是否显示对应位置的标签[^2] ```python ax.tick_params(top=False, right=False) # 隐藏顶部和右侧刻度线 ``` --- ### **完整示例** ```python import matplotlib.pyplot as plt import numpy as np # 生成示例数据 x = np.linspace(0, 2*np.pi, 100) y = np.sin(x) # 创建画布和坐标轴 fig, ax = plt.subplots() ax.plot(x, y) # 设置刻度参数 ax.tick_params( axis='both', # 同时操作x轴和y轴 direction='out', # 刻度线朝外 length=8, # 刻度线长度 width=1.5, # 刻度线宽度 color='green', # 刻度线颜色 labelsize=12, # 标签字体大小 labelcolor='purple', # 标签颜色 bottom=True, # 显示底部刻度线 top=False, # 隐藏顶部刻度线 labelrotation=45 # 标签旋转45度 ) plt.show() ``` --- ### **注意事项** 1. **中文显示问题**:若标签显示为方块,需设置中文字体(见引用[^4]) 2. **参数优先级**:`ax.tick_params()`的配置会覆盖全局默认设置 3. **组合使用**:可配合`ax.set_xticks()`和`ax.set_xticklabels()`实现更复杂的刻度控制[^3] ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值