计算化学学习笔记(一)

本文是作者学习量子化学的笔记,介绍了使用Gaussian软件进行分子结构计算,探讨了文本方式输入结构及控制自由度的方法。文章还深入浅出地讲解了势能面的基本概念,包括Born-Oppenheimer近似和势能面在化学反应路径中的作用。此外,提到了在实际计算中面临的势能面模拟挑战和解决策略,以及在量子化学中常用的极小点搜索算法,如牛顿法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以前以为CSDN只有计算机相关的博文,今天也在论坛上看到了一些量子化学的博文。最近也在学习量子化学,同时使用Gaussian软件进行实验,想在这里写一些东西作为学习的记录。

之前学习过使用GView软件用可视化的方法得到分子结构输入文件,使用Gaussian进行单点能的计算,这些都比较简单的入门内容。

今日从另一本教参上学习了文本方式输入结构的几种方法,以及如何通过不同的传参方法控制结构的自由度。如下所示,使用两种传参方式表示CFH3分子,两种方式得到的分子初始结构是一致的,区别在于使用第一种传参方法则固定了三个碳氢键键长使用同一参数R2,而是用第二种传参方式则没有进行限制。事实有基本的化学理解就会知道三个碳氢键键长必然相等,因此第一种方法在限制优化过程的同时在计算上有一定的简化。

0 1
C
F 1 R1
H 1 R2 2 A
H 1 R2 2 A 3 B
H 1 R2 2 A 3 -B

R1 = 1.38
R2 = 1.09
A = 110.6
B = 120.0
0 1
C
F 1 R1
H 1 R2 2 A
H 1 R3 2 A 3 B
H 1 R4 2 A 3 -B

R1 = 1.38
R2 = 1.09
R3 = 1.09
R4 = 1.09
A = 110.6
B = 120.0

另外今天开始学习势能面的基础知识,在量子化学中,我们从分子中原子核与电子的空间坐标出发,通过薛定谔方程可以得到分子体系的能量。从数学角度理解也即势能是一组坐标的多元函数,而该函数在高维空间中则形成一个高维曲面,也即势能面。

然而一个分子中含有大量的电子,如果要根据所有粒子的坐标建立势能面,势必会导入大量的复杂度,因此在量子化学中有着Born-Oppenheimer近

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值