重温经典第四弹(xdoj1143)

30 篇文章 0 订阅
8 篇文章 0 订阅
这篇博客回顾了作者大一时遇到的ACM竞赛题目——1143 方格填数。当时未能解决,现在看来变得简单,通过DFS枚举并优化避免重复访问,预处理GCD值,成功AC。作者感慨代码的演变,贴出了当时的原始代码作为纪念。
摘要由CSDN通过智能技术生成

这题有点年份了,大一校赛的网络赛题目,当年a了5题后直接放掉了这题,使得这题一直是我该oj上唯一的一抹红,现在再看来,早已变成了水题一道,稍稍谢谢,一发轻松ac,甚是欣慰

 

1143  方格填数

思路:由于枚举所有结果,只有362880中情况,加上100组数据,完全可以dfs枚举,注意避免重复访问剪枝一下就好了,然后预处理一下gcd的值,ok

 

/*
Author Owen_Q
*/

#include <bits/stdc++.h>

using namespace std;
/*
typedef struct FG
{
    int k;
    int t;
    vector <int> p;
    bool in;
}Fg;

typedef struct PX
{
    int id;
    int k;
}Px;

Fg a[9];
Px b[9];
*
int gcd(int a,int b)
{
	int t;
	while(b)
	{
		t = a%b;
		a = b;
		b = t;
	}
	return a;
}

int cmp(const Px &a,const Px &b)
{
    return a.k>b.k;
}

int cmpint(const int &a,const int &b)
{
    return a>b;
}

int main()
{
    while(scanf("%d%d%d%d%d%d%d%d%d",&a[0].k,&a[1].k,&a[2].k,&a[3].k,&a[4].k,&a[5].k,&a[6].k,&a[7].k,&a[8].k)!=EOF)
    {
        for(int i=0;i<9;i++)
        {
            int temp=0;
            b[i].id=i;
            b[i].k=a[i].k;
            a[i].p.clear();
            for(int j=0;j<9;j++)
            {
                if(gcd(a[j].k,a[i].k)==1)
                {
                    temp++;
                    a[i].p.push_back(j);
                }
            }
            a[i].t=temp;
        }
        sort(b,b+9,cmp);
        if(b[0].k<4||b[4].k<3||b[8].k<2)
        {
            printf("%d\n",0);
        }
        else
        {
            int sum=0;
            for(int i=0;b[i].k>=4;i++)
            {
                for(int j=0;j<9;j++)
                {
                    a[j].in=false;
                }
                a[b[i].id].in=true;
                vector <int> ::iterator it1,it2,it3,it4;
                sort(a[b[i].id].p.begin(),a[b[i].id].p.end(),cmpint);
                for(it1=a[b[i].id].p.begin();it1!=a[b[i].id].p.end()&&a[*it1].k>=3;it1++)
                {
                    a[*it1].in=true;
                    for(it2=it1+1;it2!=a[b[i].id].p.end()&&a[*it2].k>=3;it2++)
                    {
                        a[*it2].in=true;
                        for(it3=it2+1;it3!=a[b[i].id].p.end()&&a[*it3].k>=3;it3++)
                        {
                            a[*it3].in=true;
                            for(it4=it3+1;it4!=a[b[i].id].p.end()&&a[*it4].k>=3;it4++)
                            {
                                a[*it4].in=true;

                                a[*it4].in=false;
                            }
                            a[*it3].in=false;
                        }
                        a[*it2].in=false;
                    }
                    a[*it1].in=false;
                }
            }
        }
          for(int i=0;i<9;i++)
        {
            cout<<a[i].id<<" "<<a[i].k<<endl;
        }
    }
    return 0;
}



int a[9];
int m[3][3];
bool a_in[9];
bool m_in[3][3];
int b[2][2]={{0,1},{1,0}};
int m[9];

int cmp(const int &a,const int &b)
{
    return a>b;
}

int dfs(int x,int y,int sum)
{
    if(x<0||x>2||y<0||y>2)
        return sum;
    for(int i=0;i<9;i++)
    {
        cout<<"x="<<x<<"y="<<y<<"sum="<<sum<<endl;
        if(a_in[i])
            continue;
        if(!m_in[x][y])
        {
            if(x>0&&m_in[x-1][y]&&gcd(m[x-1][y],a[i])!=1)
                continue ;
            if(x<2&&m_in[x+1][y]&&gcd(m[x+1][y],a[i])!=1)
                continue ;
            if(y>0&&m_in[x][y-1]&&gcd(m[x][y-1],a[i])!=1)
                continue ;
            if(y<2&&m_in[x][y+1]&&gcd(m[x][y+1],a[i])!=1)
                continue ;
            m_in[x][y]=true;
            m[x][y]=a[i];
            a_in[i]=true;
            dfs(x+b[0][0],y+b[0][1],sum);
            dfs(x+b[1][0],y+b[1][1],sum);
            m_in[x][y]=false;
            a_in[i]=false;
        }
    }
    if(x==2&&y==0)
        return sum+1;
    else
        return sum;
}


bool can(int x,int k)
{
    if(x==0)
        return true;
    else if(x%3>0&&gcd(k,m[x-1])!=1)
        return false;
    else if(x>2&&gcd(k,m[x-3])!=1)
        return false;
    else
        return true;
}

int dfs(int x,int sum)
{
    if(x==9)
    {
        sum++;
        return sum;
    }
    for(int i=0;i<9;i++)
    {
        if(a_in[i])
            continue;
        else
        {
            if(can(x,a[i]))
            {
                m[x]=a[i];
                a_in[i]=true;
                cout<<"x="<<x<<"i="<<i<<"sum="<<sum<<endl;
                sum=dfs(x+1,sum);
                a_in[i]=false;
            }
        }
    }
    return sum;
}

int main()
{
    while(scanf("%d%d%d%d%d%d%d%d%d",&a[0],&a[1],&a[2],&a[3],&a[4],&a[5],&a[6],&a[7],&a[8])!=EOF)
    {
        sort(a,a+9,cmp);
        if(a[0]<4||a[4]<3||a[8]<2)
        {
            printf("%d\n",0);
        }
        else
        {
            memset(a_in,false,9*sizeof(bool));
            memset(m_in,false,9*sizeof(bool));
            int sum=0;
            sum=dfs(0,0,sum);
            sum=dfs(0,sum);
            printf("%d\n",sum);
        }
    }
    return 0;
}
*/

int a[10];

bool near[10][10];

int gcd(int a,int b)
{
	return b == 0 ? a : gcd(b, a % b);
}

int sum;

int pos[10];

vector <int> ne[10];

bool in[10];

void dfs(int k)
{
    if(k==9)
    {
        sum++;
    }
    else
    {
        for(int i=0;i<9;i++)
        {
            if(in[i])
            {
                continue;
            }
            int len = ne[k].size();
            int j;
            for(j=0;j<len;j++)
            {
                if(!near[i][pos[ne[k][j]]])
                {
                    break;
                }
            }
            if(j<len)
            {
                continue;
            }
            pos[k] = i;
            in[i] = true;
            dfs(k+1);
            in[i] = false;
        }
    }
    return ;
}

int main()
{
    ne[0].clear();
    ne[1].clear();
    ne[1].push_back(0);
    ne[2].clear();
    ne[2].push_back(1);
    ne[3].clear();
    ne[3].push_back(0);
    ne[4].clear();
    ne[4].push_back(3);
    ne[4].push_back(1);
    ne[5].clear();
    ne[5].push_back(4);
    ne[5].push_back(2);
    ne[6].clear();
    ne[6].push_back(3);
    ne[7].clear();
    ne[7].push_back(6);
    ne[7].push_back(4);
    ne[8].clear();
    ne[8].push_back(7);
    ne[8].push_back(5);
    while(scanf("%d",&a[0])!=EOF)
    {
        memset(near,false,sizeof(near));
        memset(in,false,sizeof(in));
        sum = 0;
        for(int i=1;i<9;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=0;i<9;i++)
        {
            for(int j=0;j<9;j++)
            {
                if(gcd(a[i],a[j])==1)
                {
                    near[i][j] = true;
                }
            }
        }
        dfs(0);
        printf("%d\n",sum);
    }
}


看着大一自己写的长长的代码,各种结构体,排序,比较,已经早已看不懂当时的思路了,当然也没什么闲工夫再去琢磨,能发现gcd和dfs,总思路算是没错的吧,满满的回忆,就把代码都贴在开头了,作为永恒的纪念

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值