leetcode300:最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

思路:动态规划 dp[i]表示当前数字前可以有多少递增序列(包含本身)

           如果符合前边的数小于当前数,可以考虑所有小于当前数的dp[j]+1与dp[i]比较

          dp[i]= max(dp[j]+1,dp[i]) , 0<=j<i 在num[j]<num[i]的条件下

          最后选最大的dp[i]

代码:

class Solution(object):
    def lengthOfLIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """        
        if not nums:
            return 0
        dp = [1] * len(nums)
        for i in range(len(nums)):
            for j in range(i):
                if nums[j] < nums[i]:# 条件 前边的数比现在的数小,就可以实现序列的输出
                    dp[i]=max(dp[j]+1, dp[i]) # 每次根据前边的序列的增长情况进行判断,如果j处的dp+1大于i处的dp那么就选大的
        return max(dp)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值