numpy中的省略号(...)和冒号(:)

最近看到一份代码,里面出现类似这样的代码a[..., 0]。一时间不太清楚,于是去了解了一下。自己明白了,在这里记录一下。

省略号和冒号的作用

省略号和冒号都是用来操作列表,用来快速操作元素的。

冒号的作用

比如下面的例子:

c = np.random.randint(0, 100, 10)
print(c)

生成这样一个随机列表:

[49 29 75 51 23 39 92 97 55 56]

然后进行以下几种操作:

c[1:5]

[29, 75, 51, 23]

c[:5]

[49, 29, 75, 51, 23]

c[1:]

[29, 75, 51, 23, 39, 92, 97, 55, 56]

根据上面的结果我们可以看出,冒号是制定范围的符号,两边的符号都可以省略,省略之后按照列表的开始和结尾进行计算。

省略号的作用

首先看下面的例子,生成这样一个随机的多维列表:

a = np.random.randn(3,3,2)

[[[-0.96299703  0.02378626]
  [ 0.59746868  1.42771025]
  [ 0.85895668 -1.14798297]]
 [[ 0.17174135  0.57507109]
  [ 2.3165666   0.60841675]
  [-1.77101868 -1.59714269]]
 [[-1.04117545 -0.09460908]
  [-0.96938343 -0.95701071]
  [ 1.28433109  0.65195701]]]

然后执行代码

b = a[..., 1]

[[ 0.02378626  1.42771025 -1.14798297]
 [ 0.57507109  0.60841675 -1.59714269]
 [-0.09460908 -0.95701071  0.65195701]]

原来3 * 3 * 2的矩阵变成了3 * 3的矩阵。

下面改变一下形式:

b = a[ 1, ...]

[[ 0.17174135  0.57507109]
 [ 2.3165666   0.60841675]
 [-1.77101868 -1.59714269]]

这下变成了一个3 * 2的矩阵。

再改变一下:

b = a[1, ..., 1]

[ 0.57507109  0.60841675 -1.59714269]

变成了一个3维的向量了。

通过以上的实验,我们可以总结一下省略号的作用:
若干省略的维度保持原样,其他维度保留给定参数的元素

什么意思呢,比如给定的是[3,3,2]的矩阵,如果查询的是[…, 1],那么,原来最后一维的向量只保留编号为1(第二个)的元素,之前的保持不变,所以会变成一个3*3的矩阵,最后一维只保留一个,消失了。

同理,查询[1,…],第一维的元素只保留编号为1(第二个)的元素,剩下的维度保持不变。

还有就是…在中间的时候,给定两端要保留的元素维度,其他保持不变,从第三个例子能够看出。

两者的区别

从上面的例子中,能够看出,两者有一定的区别:

  1. ...可以代表任意多维的元素,而每个:只能代表一个维度。
  2. :可以指定代表的维度的区间范围,...不能。
  3. ...只能出现一次,而:可以出现多次,但不能超过矩阵的维度。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值