最近看到一份代码,里面出现类似这样的代码a[..., 0]
。一时间不太清楚,于是去了解了一下。自己明白了,在这里记录一下。
省略号和冒号的作用
省略号和冒号都是用来操作列表,用来快速操作元素的。
冒号的作用
比如下面的例子:
c = np.random.randint(0, 100, 10)
print(c)
生成这样一个随机列表:
[49 29 75 51 23 39 92 97 55 56]
然后进行以下几种操作:
c[1:5]
[29, 75, 51, 23]
c[:5]
[49, 29, 75, 51, 23]
c[1:]
[29, 75, 51, 23, 39, 92, 97, 55, 56]
根据上面的结果我们可以看出,冒号是制定范围的符号,两边的符号都可以省略,省略之后按照列表的开始和结尾进行计算。
省略号的作用
首先看下面的例子,生成这样一个随机的多维列表:
a = np.random.randn(3,3,2)
[[[-0.96299703 0.02378626]
[ 0.59746868 1.42771025]
[ 0.85895668 -1.14798297]]
[[ 0.17174135 0.57507109]
[ 2.3165666 0.60841675]
[-1.77101868 -1.59714269]]
[[-1.04117545 -0.09460908]
[-0.96938343 -0.95701071]
[ 1.28433109 0.65195701]]]
然后执行代码
b = a[..., 1]
[[ 0.02378626 1.42771025 -1.14798297]
[ 0.57507109 0.60841675 -1.59714269]
[-0.09460908 -0.95701071 0.65195701]]
原来3 * 3 * 2的矩阵变成了3 * 3的矩阵。
下面改变一下形式:
b = a[ 1, ...]
[[ 0.17174135 0.57507109]
[ 2.3165666 0.60841675]
[-1.77101868 -1.59714269]]
这下变成了一个3 * 2的矩阵。
再改变一下:
b = a[1, ..., 1]
[ 0.57507109 0.60841675 -1.59714269]
变成了一个3维的向量了。
通过以上的实验,我们可以总结一下省略号的作用:
若干省略的维度保持原样,其他维度保留给定参数的元素
什么意思呢,比如给定的是[3,3,2]的矩阵,如果查询的是[…, 1],那么,原来最后一维的向量只保留编号为1(第二个)的元素,之前的保持不变,所以会变成一个3*3的矩阵,最后一维只保留一个,消失了。
同理,查询[1,…],第一维的元素只保留编号为1(第二个)的元素,剩下的维度保持不变。
还有就是…在中间的时候,给定两端要保留的元素维度,其他保持不变,从第三个例子能够看出。
两者的区别
从上面的例子中,能够看出,两者有一定的区别:
...
可以代表任意多维的元素,而每个:
只能代表一个维度。:
可以指定代表的维度的区间范围,...
不能。...
只能出现一次,而:
可以出现多次,但不能超过矩阵的维度。