主成分分析(PCA)思路

主成分分析可用于降维。主成分可以理解为主反向或者主要信息。也就是给定 n n n d d d维的列向量 { x i ∈ R d × 1 } i = 1 n \{\bm{x}_i\in \mathbb{R}^{d\times 1}\}_{i=1}^n {xiRd×1}i=1n,假设现在要找到的主方向是 w 1 w_1 w1。然后主方向和这些样本什么关系呢?如果这些样本是二维的,相当于二维平面里的很多点,而这个主方向 w 1 w_1 w1就是能拟合所有的点的直线。找到最好的主方向有多个角度可以理解。

第一个角度:

映射到 w 1 w_1 w1直线上的投影长度的方差尽可能大,因此有如下目标:
arg ⁡ max ⁡ w 1 v a r [ w 1 T x ] = arg ⁡ max ⁡ w 1 E [ ( w 1 T x − E [ w 1 T x ] ) 2 ] \arg\max\limits_{w_1} var[w_1^Tx] \\=\arg\max\limits_{w_1} E[(w_1^Tx-E[w_1^Tx])^2] argw1maxvar[w1Tx]=argw1maxE[(w1TxE[w1Tx])2]
为了方便后续操作,假设已经将数据中心化(减去均值)。
= arg ⁡ max ⁡ w 1 E [ ( w 1 T x ) 2 ] = arg ⁡ max ⁡ w 1 1 n ∑ i = 1 n ( w 1 T x i ) 2 = arg ⁡ max ⁡ w 1 ∑ i = 1 n w 1 T x i x i T w 1 = arg ⁡ max ⁡ w 1 w 1 T ( ∑ i = 1 n x i x i T ) w 1 = arg ⁡ max ⁡ w 1 w 1 T ( X X T ) w 1 = arg ⁡ min ⁡ w 1 − w 1 T ( X X T ) w 1 \\=\arg\max\limits_{w_1} E[(w_1^Tx)^2] \\=\arg\max\limits_{w_1} \frac{1}{n}\sum\limits_{i=1}^n(w_1^Tx_i)^2 \\=\arg\max\limits_{w_1} \sum\limits_{i=1}^nw_1^Tx_ix_i^Tw_1 \\=\arg\max\limits_{w_1} w_1^T(\sum\limits_{i=1}^nx_ix_i^T)w_1 \\=\arg\max\limits_{w_1} w_1^T(XX^T)w_1 \\=\arg\min\limits_{w_1} -w_1^T(XX^T)w_1 =argw1maxE[(w1Tx)2]=argw1maxn1i=1n(w1Txi)2=argw1maxi=1nw1TxixiTw1=argw1maxw1T(i=1nxixiT)w1=argw1maxw1T(XXT)w1=argw1minw1T(XXT)w1
因为 w 1 w_1 w1不能无限大,有约束条件 w 1 T w 1 = 1 w_1^Tw_1=1 w1Tw1=1
拉格朗日函数:
L ( w 1 , λ ) = − w 1 T ( X X T ) w 1 + λ ( w 1 T w 1 − 1 ) L(w_1,\lambda)=-w_1^T(XX^T)w_1+\lambda(w_1^Tw_1-1) L(w1,λ)=w1T(XXT)w1+λ(w1Tw11)
∂ L ( w 1 , λ ) ∂ w 1 = 0 \frac{\partial L(w_1,\lambda)}{\partial w_1}=0 w1L(w1,λ)=0
得:
X X T w 1 = λ w 1 XX^Tw_1=\lambda w_1 XXTw1=λw1
即主方向是 X X T XX^T XXT的特征向量方向。那个特征方向最好呢?考虑到 w 1 T ( X X T ) w 1 = w 1 T λ w 1 = λ w_1^T(XX^T)w_1=w_1^T\lambda w_1=\lambda w1T(XXT)w1=w1Tλw1=λ。因此最大化 w 1 T ( X X T ) w 1 w_1^T(XX^T)w_1 w1T(XXT)w1,就是求最大的特征根以及对应的特征向量。
然后求第二主成分:
arg ⁡ max ⁡ w 2 w 2 T ( X X T ) w 2 \arg\max\limits_{w_2} w_2^T(XX^T)w_2 argw2maxw2T(XXT)w2
s . t . w 1 T w 2 = 0 ,    w 2 T w 2 = 1 s.t. w_1^Tw_2=0,~~w_2^Tw_2=1 s.t.w1Tw2=0,  w2Tw2=1
即为了保持和第一主成分不相关,使 w 1 T w 2 = 0 w_1^Tw_2=0 w1Tw2=0。然后最大化第二主方向上的投影方差。

实际上, X X T XX^T XXT是实对称矩阵,所以不同特征向量是一定正交的。所以直接求出 X X T XX^T XXT第二大特征值对应的特征向量即为 w 2 w_2 w2

第二个角度:

考虑过原点的直线来拟合所有点,让最小化重构误差。
arg ⁡ min ⁡ w 1 1 n ∑ i = 1 n ( x i − l i w 1 ) 2 \arg\min\limits_{w_1}\frac{1}{n}\sum\limits_{i=1}^n(x_i-l_iw_1)^2 argw1minn1i=1n(xiliw1)2
w 1 w_1 w1为单位向量,与直线同方向。

https://blog.csdn.net/zhongkejingwang/article/details/42264479
https://blog.csdn.net/zhongkelee/article/details/44064401
https://www.jianshu.com/p/1e9cab07d54d

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值