伯努利数学习笔记

1.定义式

定义伯努利数列\(B_n\)满足:

\[B_0=1,\sum_{i=0}^n{n+1\choose i}B_i=0(n>0) \]

2.递推式

可以发现定义式里面包含了\(B_n\)这一项,于是把\(B_n\)提出来:

\[-{n+1\choose n}B_n=\sum_{i=0}^{n-1}{n+1\choose i}B_i \\-(n+1)B_n=\sum_{i=0}^{n-1}{n+1\choose i}B_i \\B_n=-\frac{1}{n+1}\sum_{i=0}^{n-1}{n+1\choose i}B_i \]

直接用定义式求是\(O(n^2)\)的复杂度

3.生成函数

把定义式的循环上界减一,得:

\[\sum_{i=0}^{n-1}{n\choose i}B_i=0 \]

注意到组合数上标变成了\(n\),再加个\(B_n\)

\[\sum_{i=0}^{n-1}{n\choose i}B_i+B_n=B_n \\\sum_{i=0}^{n-1}{n\choose i}B_i+{n\choose n}B_n=B_n \\\sum_{i=0}^{n}{n\choose i}B_i=B_n \]

组合数很烦,把它拆开来:

\[\sum_{i=0}^{n}\frac{n!}{i!(n-i)!}B_i=B_n \\\sum_{i=0}^n\frac{B_i}{i!}\frac{1}{(n-i)!}=\frac{B_n}{n!} \]

两边都写成生成函数的形式:

\[\sum_{n=0}(\sum_{i=0}^n\frac{B_i}{i!}\frac{1}{(n-i)!})x^n =\sum_{n=0}(\frac{B_n}{n!})x^n \]

设伯努利数的指数型生成函数为\(B(x)=\sum_{n=0}\frac{B_n}{n!}x^n\),那么左边显然就是\(B(x)e^x\),右边就是\(B(x)\)
但是细想却不对劲,如果\(B(x)e^x=B(x)\),那么\(e^x=1\),显然不成立。注意到一开始把循环上标减了1,而根据定义,伯努利数定义式的\(n\)必须大于\(0\),所以上面的式子只有当\(n-1>0\)时成立。
于是考虑列出\(B(x)e^x\)的第\(0,1\)项:

\[[x^n]B(x)e^x=\sum_{i=0}^n\frac{B_i}{i!}\frac{1}{(n-i)!} \\
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值