伯努利数
Ps.在本篇 blog b l o g 中 [xn]F(x [ x n ] F ( x )表示 F(x) F ( x ) 的第 n n 项的系数。
定义
我们用生成函数法来定义伯努利数
换言之,就是 xex−1 x e x − 1 为伯努利数的 EGF E G F 。
一些性质
因为
所以有
上式便是伯努利数的一个性质,还有一个是当 n≥1 n ≥ 1 时,有 B2n+1=0 B 2 n + 1 = 0 ,然而我并不会证。
伯努利数与自然数幂和
我们记
我们把看成一个关于
x
x
的函数,定义序列满足
f
f
序列的生成函数为,便有
关于
f
f
序列显然的一点是,据说由归纳法可以得知,
Fk(x)
F
k
(
x
)
是一个
k+1
k
+
1
次的多项式,但是我不会证。
将
Fk(x−1)
F
k
(
x
−
1
)
展开,得
根据 Fk(x) F k ( x ) 的定义,显然我们有 Fk(x−1)+xk F k ( x − 1 ) + x k = Fk(x) F k ( x ) ,所以 [xn]Fk(x−1)+xk [ x n ] F k ( x − 1 ) + x k = [xn]Fk(x) [ x n ] F k ( x ) ,于是我们便知
还有一条等式是
我们可以惊奇地发现, fk+1 f k + 1 我们可以直接推得,但我们依然要对该式子变形以便我们接下来的推导
如此这般我们便得到了两条恒等式。
我们记 f′k+1−i=(−1)i i!fi f k + 1 − i ′ = ( − 1 ) i i ! f i ,记 f′ f ′ 的 OGF O G F 为 F′(x) F ′ ( x ) ,我们让 F′(x) F ′ ( x ) 和 (ex−1) ( e x − 1 ) 卷积一下,看一下会有什么奇迹银翘
以及
终上所述, F′(x)(ex−1)=(−1)k+1k! x F ′ ( x ) ( e x − 1 ) = ( − 1 ) k + 1 k ! x ,变一下式子,便得
一看,咦,右边的不就是伯努利数的 EGF E G F ,这么巧啊。
再构造一个多项式
F(x)
F
(
x
)
满足
然后我们让
F(x)
F
(
x
)
和
xex−1
x
e
x
−
1
卷一下,得
从上式我们可以看出,我们只需用多项式求逆预处理出伯努利数的指数型生成函数,再用 F(x) F ( x ) 卷积一下便可在 O(k log k) O ( k l o g k ) 的时间内求出 1∼n 1 ∼ n 的 1,2......k 1 , 2...... k 次幂和。
我们再化简一下上面的式子,
于是这样我们便得到了伯努利数推导自然数幂和的公式了。
如有大佬发现本篇 blog b l o g 中有错误,欢迎当场打脸指出。