线性回归 / 基础优化方法

有点猪脑过载了,,,

线性回归

好像是唯一有显示解的模型,推导没怎么看懂,先空着

线性模型

对于n维输入,n维权重,和一个标准偏差b

损失函数(平方损失)

用来评估实际值与预测值损失

 对于n个样本(别忘除n)

随机梯度下降

梯度下降长这样,学习率是步长的超参数

对于每次迭代,都需要对整个样本重新求梯度,代价过大,所以一般选择随机对样本进行取样再求梯度,叫做随机梯度下降。

我们每次采集b个样本,这里的批量大小b是另一个重要的超参数

算法实现

造轮子实现法

生成数据

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

数据分批量

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

定义模型

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

定义损失函数

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()

训练

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

调包实现

生成数据集 / 读取数据集

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

定义模型

from torch import nn

net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

Linear(2,1)指输入特征形状为2,输出为一个标量,形状1

net[0]访问第一层,weight.data和bias.data可以访问参数

损失函数

loss = nn.MSELoss()

这个就是现成的均方损失,或平方L2范数 

优化算法

trainer = torch.optim.SGD(net.parameters(), lr=0.03)

SGD:梯度下降法

optim:实现各种优化算法的包

lr:学习率

训练

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

net(X)预测值,输出的是标量预测y,net里面存的是参数权重w和噪音b,输出是1维标量,其实对应的就是前面手写版里的向量内积和b求预测值,y = <X, w> + b

trainer.step()迭代,更新参数,Wt = Wt-1 - lr * 梯度

data_iter是随机批量的数据,后面输出的l = loss(net(feartures), labels)是将更新来的参数代入整个数据中求loss

结果:,,,,挺抽象的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值