Bellman_ford算法
思路:
Bellman_ford算法遍历图中所有的边以更新各点的距离,对于无负权回路的图,最多经过n-1次(n为边数)遍历,便可找到最短距离。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 150010;
int dis[N], backup[N]; // backup为备份数组
int n, m;
struct
{
int a, b, w;
}edges[N];
bool bellman_ford()
{
memset(dis, 0x3f, sizeof(dis));
dis[1] = 0;
for(int i = 1; i < m; i++)
{
memcpy(backup, dis, sizeof(dis));
for(int j = 1; j <= m; j++)
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
dis[b] = min(dis[b], backup[a] + w); // 保证每一次更新的都在上一次基础上得来
}
}
return dis[n] < 0x3f3f3f3f/2;
}
int main()
{
cin >> n >> m;
int x, y, z;
for(int i = 1; i <= m; i++)
{
cin >> x >> y >> z;
edges[i] = {x, y, z};
}
if(bellman_ford()) cout << dis[n];
else cout << "impossible";
return 0;
}
spfa算法
思路:spfa算法由Bellman_ford算法优化而来,不再遍历每一条边,而是遍历每一个被更新过距离的点的后继点,因为若一个点的距离未被更新,则其后继点的距离也一定不会因为该点而发生改变。为此可用队列存每个被更新距离点的后继节点。
若需判断一个图中是否有负权回路,则可开一个cnt[]数组存取当前各点到起点最短路径的边数。如果cnt中有值大于边数-1,则存在负权回路。
#include <iostream>
#include <cstring>
#include <utility>
#include <queue>
using namespace std;
const int N = 150010;
int idx, e[N], ne[N], w[N], h[N], dis[N];
bool in[N];
// int cnt[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
bool spfa(int n)
{
memset(dis, 0x3f, sizeof(dis));
queue<int> qq;
qq.push(1);
dis[1] = 0;
while(qq.size())
{
int t = qq.front();
qq.pop();
in[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
if(dis[e[i]] > dis[t] + w[i])
{
dis[e[i]] = dis[t] + w[i];
if(!in[e[i]])
{
qq.push(e[i]);
in[e[i]] = true;
// cnt[e[i]] = cnt[t] + 1;
// if(cnt[e[i] >= n) => 存在负环
}
}
}
return dis[n] < 0x3f3f3f3f/2;
}
int main()
{
memset(h, -1, sizeof(h));
int n, m;
cin >> n >> m;
int x, y, z;
while(m--)
{
cin >> x >> y >> z;
add(x, y, z);
}
if(spfa(n)) cout << dis[n];
else cout << "impossible";
return 0;
}