单源最短路且存在负权边的SPFA算法(Bellman-Ford算法的优化版)

17 篇文章 0 订阅
6 篇文章 0 订阅

SPFA算法时间复杂度:一般O(n),最坏O(m*n);

SPFA算法即可以计算Dijkstra算法能解决的所有边都是正权问题,也可以解决存在负权边的问题。

用宽搜处理SPFA算法,所以大致的入队情形与bfs差不多。

具体做法:

  1,起点入队;

  2,遍历与队头相邻的点,更新最短距离。


例题: 

   spfa求最短路

给定一个 n 个点 mm 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出 11 号点到 nn 号点的最短距离,如果无法从 11 号点走到 nn 号点,则输出 impossible

数据保证不存在负权回路。

输入格式

第一行包含整数 nn 和 mm。

接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

输出格式

输出一个整数,表示 11 号点到 nn 号点的最短距离。

如果路径不存在,则输出 impossible

数据范围

1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int N=100010;
int h[N],e[N],ne[N],dist[N],w[N];
bool st[N];
int m,n,idx;
void add(int a,int b,int c)
{
	e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
void spfa()
{
	memset(dist,0x3f,sizeof dist);
	dist[1]=0;
	
	
	queue<int>q;
	q.push(1);
	st[1]=true;
	
	while(q.size())
	{
		auto t=q.front();
		q.pop();
		st[t]=false;
		
		for(int i=h[t];i!=-1;i=ne[i])
		{
			int j=e[i];
			if(dist[j]>dist[t]+w[i])
			{
				dist[j]=dist[t]+w[i];
				if(!st[j])
				{
					st[j]=true;
					q.push(j);
				}
			}
		}
	}
	if(dist[n]==0x3f3f3f3f)cout<<"impossible"<<endl;
	else cout<<dist[n]<<endl;
}
int main()
{
	cin>>n>>m;
	memset(h,-1,sizeof h);
	while(m--)
	{
		int a,b,c;
		cin>>a>>b>>c;
		add(a,b,c);
	}
	spfa();
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Adellle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值