SPFA算法时间复杂度:一般O(n),最坏O(m*n);
SPFA算法即可以计算Dijkstra算法能解决的所有边都是正权问题,也可以解决存在负权边的问题。
用宽搜处理SPFA算法,所以大致的入队情形与bfs差不多。
具体做法:
1,起点入队;
2,遍历与队头相邻的点,更新最短距离。
例题:
spfa求最短路
给定一个 n 个点 mm 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 11 号点到 nn 号点的最短距离,如果无法从 11 号点走到 nn 号点,则输出 impossible
。
数据保证不存在负权回路。
输入格式
第一行包含整数 nn 和 mm。
接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。
输出格式
输出一个整数,表示 11 号点到 nn 号点的最短距离。
如果路径不存在,则输出 impossible
。
数据范围
1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过 1000010000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int N=100010;
int h[N],e[N],ne[N],dist[N],w[N];
bool st[N];
int m,n,idx;
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
void spfa()
{
memset(dist,0x3f,sizeof dist);
dist[1]=0;
queue<int>q;
q.push(1);
st[1]=true;
while(q.size())
{
auto t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
if(!st[j])
{
st[j]=true;
q.push(j);
}
}
}
}
if(dist[n]==0x3f3f3f3f)cout<<"impossible"<<endl;
else cout<<dist[n]<<endl;
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
spfa();
return 0;
}