文章目录
Alternating Series, Absolute and Conditional Convergence
Alternating Series
A series in which the terms are alternately positive and negative is an alternating series and the n n nth term of an alternating series is of the form
a n = ( − 1 ) n + 1 u n or a n = ( − 1 ) n u n a_n=(-1)^{n+1}u_n\quad\text{ or }\quad a_n=(-1)^nu_n an=(−1)n+1un or an=(−1)nun
THEOREM 14
The Alternating Series Test (Leibniz’s Test)
The series
∑ n = 1 ∞ ( − 1 ) n + 1 u n = u 1 − u 2 + u 3 − u 4 + … \sum\limits_{n=1}^\infin{(-1)^{n+1}u_n}=u_1-u_2+u_3-u_4+\dots n=1∑∞(−1)n+1un=u1−u2+u3−u4+…converges if all three of the following conditions are satisfied:
- The u n u_n un