THOMAS’ CALCULUS 学习笔记(Chapter 10-8)

本文详细探讨了泰勒级数和麦克劳林级数的概念及其应用。泰勒级数是函数的一种无穷多项式表示,通过在某一点连续求导并利用这些导数值来确定级数系数。而麦克劳林级数是泰勒级数在x=0处的特殊情况。文中还举例说明如何找到特定函数的泰勒级数和泰勒多项式,并强调泰勒多项式的阶数可能不同于其次数。
摘要由CSDN通过智能技术生成

Taylor and Maclaurin Series

Taylor series are considered one of the most important topics of this chapter.

Series Representations

Assume that f ( x ) f(x) f(x) is the sum of a power series
f ( x ) = ∑ n = 0 ∞ a n ( x − a ) n = a 0 + a 1 ( x − a ) + a 2 ( x − a ) 2 + ⋯ + a n ( x − a ) n + ⋯ \begin{array}{rcl} f(x) & = & \sum^\infin\limits_{n=0}a_n(x-a)^n\\ & = & a_0+a_1(x-a)+a_2(x-a)^2+\cdots+a_n(x-a)^n+\cdots \end{array} f(x)==n=0an(xa)na0+a1(xa)+a2(xa)2++an(xa)n+with a positive radius of convergence. By repeated term-by-term differentiation within the interval of convergence I I I, we obtain
f ′ ( x ) = a 1 + 2 a 2 ( x − a ) + 3 a 3 ( x − a ) 2 + ⋯ + n a n ( x − a ) n − 1 + ⋯   , f ′ ′ ( x ) = 1 ⋅ 2 a 2 + 2 ⋅ 3 a 3 ( x − a ) + 3 ⋅ 4 a 4 ( x − a ) 2 + ⋯   , f ′ ′ ′ ( x ) = 1 ⋅ 2 ⋅ 3 a 3 + 2 ⋅ 3 ⋅ 4 a 4 ( x − a ) + 3 ⋅ 4 ⋅ 5 a 5 ( x − a ) 2 + ⋯   , \begin{array}{rcl} f'(x) & = & a_1+2a_2(x-a)+3a_3(x-a)^2+\cdots+na_n(x-a)^{n-1}+\cdots,\\ f''(x) & = & 1\cdot2a_2+2\cdot3a_3(x-a)+3\cdot4a_4(x-a)^2+\cdots,\\ f'''(x) & = & 1\cdot2\cdot3a_3+2\cdot3\cdot4a_4(x-a)+3\cdot4\cdot5a_5(x-a)^2+\cdots, \end{array} f(x)f(x)f(x)===a1+2a2(xa)+3a3(xa)2++nan(xa)n1+,12a2+23a3(xa)+34a4(xa)2+,123a3+234a4(xa)+345a5(xa)2+,with the n n nth derivative, for all n n n, being
f ( n ) ( x ) = n ! a n + a sum of terms with  ( x − a )  as a factor . f^{(n)}(x)=n!a_n+\text{a sum of terms with }(x-a)\text{ as a factor}. f(n)(x)=n!an+a sum of terms with (xa) as a factor. Since these equations all hold at x = a x=a x=a, we have
f ′ ( a ) = a 1 , f ′ ′ ( a ) = 1 ⋅ 2 a 2 , f ′ ′ ′ ( a ) = 1 ⋅ 2 ⋅ 3 a 3 , f'(a)=a_1,\quad f''(a)=1\cdot2a_2,\quad f'''(a)=1\cdot2\cdot3a_3, f(a)=a1,f(a)=12a2,f(a)=123a3,and, in general, f ( n ) ( a ) = n ! a n . f^{(n)}(a)=n!a_n. f(n)(a)=n!an.These formulas reveal a pattern in the coefficients of any power series ∑ n = 0 ∞ a n ( x − a ) n \sum_{n=0}^\infin a_n(x-a)^n n=0an(xa)n that converges to the values of f f f on I I I (“represents f f f on I I I”). If there is such a series (still an open question), then there is only one such series, and its nth coefficient is a n = f ( n ) ( a ) n ! . a_n=\frac{f^{(n)}(a)}{n!}. an=n!f(n)(a).If f f f has a series representation, then the series must be
f ( x ) = f ( a ) + f ′ ( x ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2        + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + ⋯   . \displaystyle f(x)=f(a)+f'(x)(x-a)+\frac{f''(a)}{2!}(x-a)^2\\ \displaystyle \qquad\qquad\;\;\;+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+\cdots. f(x)=f(a)+f(x)(xa)+2!f(a)(xa)2++n!f(n)(a)(xa)n+.

Taylor and Maclaurin Series

DEFINITIONS
Let f f f be a function with derivatives of all orders throughout some interval containing a a a as an interior point. Then the Taylor series generated by f f f at x = a x=a x=a is
∑ k = 0 ∞ f ( k ) ( a ) k ! ( x − a ) k = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2       + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + ⋯ \displaystyle\sum_{k=0}^\infin\frac{f^{(k)}(a)}{k!}(x-a)^k=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2\\\qquad\qquad\qquad\qquad\qquad\;\;\,+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n +\cdots k=0k!f(k)(a)(xa)k=f(a)+f(a)(xa)+2!f(a)(xa)2++n!f(n)(a)(xa)n+The Maclaurin series generated by f f f is
∑ k = 0 ∞ f ( k ) ( 0 ) k ! x k = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + ⋯   , \displaystyle\sum_{k=0}^\infin\frac{f^{(k)}(0)}{k!}x^k=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\cdots, k=0k!f(k)(0)xk=f(0)+f(0)x+2!f(0)x2++n!f(n)(0)xn+,the Taylor series generated by f f f at x = 0 x = 0 x=0.

The Maclaurin series generated by f f f is often just called the Taylor series of f f f.
e.g.
Find the Taylor series generated by f ( x ) = 1 / x f(x)=1/x f(x)=1/x at a = 2 a=2 a=2. Where, if anywhere, does the series converge to 1 / x 1/x 1/x?

Taylor Polynomials

DEFINITIONS
Let f f f be a function with derivatives of order k k k for k = 1 , 2 , … , k=1,2,\dots, k=1,2,, in some interval containing a a a as an interior point. Then for any integer n n n from 0 0 0 through N N N, the Taylor polynomial of order n generated by f f f at x = a x=a x=a is the polynomial
P n ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯       + f ( k ) ( a ) k ! ( x − a ) k + ⋯ + f ( n ) ( a ) n ! ( x − a ) n . \begin{array}{rl} P_n(x)=f(a)+f'(a)(x-a)+\displaystyle\frac{f''(a)}{2!}(x-a)^2+\cdots\qquad\qquad\qquad\qquad\;\;\,\\\\ \qquad\qquad\qquad+\displaystyle\frac{f^{(k)}(a)}{k!}(x-a)^k+\dots+\frac{f^{(n)}(a)}{n!}(x-a)^n.\end{array} Pn(x)=f(a)+f(a)(xa)+2!f(a)(xa)2++k!f(k)(a)(xa)k++n!f(n)(a)(xa)n.

We speak of a Taylor polynomial of order n rather than degree n because f ( n ) ( a ) f^{(n)}(a) f(n)(a) may be zero. The first two Taylor polynomials of f ( x ) = c o s x f(x)=cosx f(x)=cosx at x = 0 x=0 x=0, for example, are P 0 ( x ) = 1 P_0(x)=1 P0(x)=1 and P 1 ( x ) = 1 P_1(x)=1 P1(x)=1. The first-order Taylor polynomial has degree zero, not one.
* order: 阶数; degree: 次数.
e.g.
Find the Taylor series and the Taylor polynomials generated by f ( x ) = e x f(x)=e^x f(x)=ex at x = 0 x=0 x=0.



Last: THOMAS’ CALCULUS 学习笔记(Chapter 10-7)
Next: THOMAS’ CALCULUS 学习笔记(Chapter 10-9)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值