Taylor and Maclaurin Series
Taylor series are considered one of the most important topics of this chapter.
Series Representations
Assume that
f
(
x
)
f(x)
f(x) is the sum of a power series
f
(
x
)
=
∑
n
=
0
∞
a
n
(
x
−
a
)
n
=
a
0
+
a
1
(
x
−
a
)
+
a
2
(
x
−
a
)
2
+
⋯
+
a
n
(
x
−
a
)
n
+
⋯
\begin{array}{rcl} f(x) & = & \sum^\infin\limits_{n=0}a_n(x-a)^n\\ & = & a_0+a_1(x-a)+a_2(x-a)^2+\cdots+a_n(x-a)^n+\cdots \end{array}
f(x)==n=0∑∞an(x−a)na0+a1(x−a)+a2(x−a)2+⋯+an(x−a)n+⋯with a positive radius of convergence. By repeated term-by-term differentiation within the interval of convergence
I
I
I, we obtain
f
′
(
x
)
=
a
1
+
2
a
2
(
x
−
a
)
+
3
a
3
(
x
−
a
)
2
+
⋯
+
n
a
n
(
x
−
a
)
n
−
1
+
⋯
,
f
′
′
(
x
)
=
1
⋅
2
a
2
+
2
⋅
3
a
3
(
x
−
a
)
+
3
⋅
4
a
4
(
x
−
a
)
2
+
⋯
,
f
′
′
′
(
x
)
=
1
⋅
2
⋅
3
a
3
+
2
⋅
3
⋅
4
a
4
(
x
−
a
)
+
3
⋅
4
⋅
5
a
5
(
x
−
a
)
2
+
⋯
,
\begin{array}{rcl} f'(x) & = & a_1+2a_2(x-a)+3a_3(x-a)^2+\cdots+na_n(x-a)^{n-1}+\cdots,\\ f''(x) & = & 1\cdot2a_2+2\cdot3a_3(x-a)+3\cdot4a_4(x-a)^2+\cdots,\\ f'''(x) & = & 1\cdot2\cdot3a_3+2\cdot3\cdot4a_4(x-a)+3\cdot4\cdot5a_5(x-a)^2+\cdots, \end{array}
f′(x)f′′(x)f′′′(x)===a1+2a2(x−a)+3a3(x−a)2+⋯+nan(x−a)n−1+⋯,1⋅2a2+2⋅3a3(x−a)+3⋅4a4(x−a)2+⋯,1⋅2⋅3a3+2⋅3⋅4a4(x−a)+3⋅4⋅5a5(x−a)2+⋯,with the
n
n
nth derivative, for all
n
n
n, being
f
(
n
)
(
x
)
=
n
!
a
n
+
a sum of terms with
(
x
−
a
)
as a factor
.
f^{(n)}(x)=n!a_n+\text{a sum of terms with }(x-a)\text{ as a factor}.
f(n)(x)=n!an+a sum of terms with (x−a) as a factor. Since these equations all hold at
x
=
a
x=a
x=a, we have
f
′
(
a
)
=
a
1
,
f
′
′
(
a
)
=
1
⋅
2
a
2
,
f
′
′
′
(
a
)
=
1
⋅
2
⋅
3
a
3
,
f'(a)=a_1,\quad f''(a)=1\cdot2a_2,\quad f'''(a)=1\cdot2\cdot3a_3,
f′(a)=a1,f′′(a)=1⋅2a2,f′′′(a)=1⋅2⋅3a3,and, in general,
f
(
n
)
(
a
)
=
n
!
a
n
.
f^{(n)}(a)=n!a_n.
f(n)(a)=n!an.These formulas reveal a pattern in the coefficients of any power series
∑
n
=
0
∞
a
n
(
x
−
a
)
n
\sum_{n=0}^\infin a_n(x-a)^n
∑n=0∞an(x−a)n that converges to the values of
f
f
f on
I
I
I (“represents
f
f
f on
I
I
I”). If there is such a series (still an open question), then there is only one such series, and its nth coefficient is
a
n
=
f
(
n
)
(
a
)
n
!
.
a_n=\frac{f^{(n)}(a)}{n!}.
an=n!f(n)(a).If
f
f
f has a series representation, then the series must be
f
(
x
)
=
f
(
a
)
+
f
′
(
x
)
(
x
−
a
)
+
f
′
′
(
a
)
2
!
(
x
−
a
)
2
+
⋯
+
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
+
⋯
.
\displaystyle f(x)=f(a)+f'(x)(x-a)+\frac{f''(a)}{2!}(x-a)^2\\ \displaystyle \qquad\qquad\;\;\;+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+\cdots.
f(x)=f(a)+f′(x)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n+⋯.
Taylor and Maclaurin Series
DEFINITIONS
Let f f f be a function with derivatives of all orders throughout some interval containing a a a as an interior point. Then the Taylor series generated by f f f at x = a x=a x=a is
∑ k = 0 ∞ f ( k ) ( a ) k ! ( x − a ) k = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + ⋯ \displaystyle\sum_{k=0}^\infin\frac{f^{(k)}(a)}{k!}(x-a)^k=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2\\\qquad\qquad\qquad\qquad\qquad\;\;\,+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n +\cdots k=0∑∞k!f(k)(a)(x−a)k=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n+⋯The Maclaurin series generated by f f f is
∑ k = 0 ∞ f ( k ) ( 0 ) k ! x k = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + ⋯ , \displaystyle\sum_{k=0}^\infin\frac{f^{(k)}(0)}{k!}x^k=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\cdots, k=0∑∞k!f(k)(0)xk=f(0)+f′(0)x+2!f′′(0)x2+⋯+n!f(n)(0)xn+⋯,the Taylor series generated by f f f at x = 0 x = 0 x=0.
The Maclaurin series generated by
f
f
f is often just called the Taylor series of
f
f
f.
e.g.
Find the Taylor series generated by
f
(
x
)
=
1
/
x
f(x)=1/x
f(x)=1/x at
a
=
2
a=2
a=2. Where, if anywhere, does the series converge to
1
/
x
1/x
1/x?
Taylor Polynomials
DEFINITIONS
Let f f f be a function with derivatives of order k k k for k = 1 , 2 , … , k=1,2,\dots, k=1,2,…, in some interval containing a a a as an interior point. Then for any integer n n n from 0 0 0 through N N N, the Taylor polynomial of order n generated by f f f at x = a x=a x=a is the polynomial
P n ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( k ) ( a ) k ! ( x − a ) k + ⋯ + f ( n ) ( a ) n ! ( x − a ) n . \begin{array}{rl} P_n(x)=f(a)+f'(a)(x-a)+\displaystyle\frac{f''(a)}{2!}(x-a)^2+\cdots\qquad\qquad\qquad\qquad\;\;\,\\\\ \qquad\qquad\qquad+\displaystyle\frac{f^{(k)}(a)}{k!}(x-a)^k+\dots+\frac{f^{(n)}(a)}{n!}(x-a)^n.\end{array} Pn(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+k!f(k)(a)(x−a)k+⋯+n!f(n)(a)(x−a)n.
We speak of a Taylor polynomial of order n rather than degree n because
f
(
n
)
(
a
)
f^{(n)}(a)
f(n)(a) may be zero. The first two Taylor polynomials of
f
(
x
)
=
c
o
s
x
f(x)=cosx
f(x)=cosx at
x
=
0
x=0
x=0, for example, are
P
0
(
x
)
=
1
P_0(x)=1
P0(x)=1 and
P
1
(
x
)
=
1
P_1(x)=1
P1(x)=1. The first-order Taylor polynomial has degree zero, not one.
* order: 阶数; degree: 次数.
e.g.
Find the Taylor series and the Taylor polynomials generated by
f
(
x
)
=
e
x
f(x)=e^x
f(x)=ex at
x
=
0
x=0
x=0.
Last: THOMAS’ CALCULUS 学习笔记(Chapter 10-7)
Next: THOMAS’ CALCULUS 学习笔记(Chapter 10-9)