101. 最高的牛
有 NN 头牛站成一行,被编队为 1、2、3…N1、2、3…N,每头牛的身高都为整数。
当且仅当两头牛中间的牛身高都比它们矮时,两头牛方可看到对方。
现在,我们只知道其中最高的牛是第 PP 头,它的身高是 HH ,剩余牛的身高未知。
但是,我们还知道这群牛之中存在着 MM 对关系,每对关系都指明了某两头牛 AA 和 BB 可以相互看见。
求每头牛的身高的最大可能值是多少。
输入格式
第一行输入整数 N,P,H,MN,P,H,M,数据用空格隔开。
接下来 MM 行,每行输出两个整数 AA 和 BB ,代表牛 AA 和牛 BB 可以相互看见,数据用空格隔开。
输出格式
一共输出 NN 行数据,每行输出一个整数。
第 ii 行输出的整数代表第 ii 头牛可能的最大身高。
数据范围
1≤N≤50001≤N≤5000,
1≤H≤10000001≤H≤1000000,
1≤A,B≤100001≤A,B≤10000,
A≠BA≠B,
0≤M≤100000≤M≤10000
输入样例:
9 3 5 5
1 3
5 3
4 3
3 7
9 8
输出样例:
5
4
5
3
4
4
5
5
5
注意:
- 此题中给出的关系对可能存在重复
答案
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll n,p,h,m,a[10100],b[10100],x[5100];
bool r;
int main(){
cin>>n>>p>>h>>m;
for(ll i=1;i<=m;i++){
cin>>a[i]>>b[i];
if(a[i]>b[i]){
swap(a[i],b[i]);
}
r=true;
for(ll j=1;j<i;j++){
if(a[i]==a[j]&&b[i]==b[j]){
r=false;
break;
}
}
if(r==true){
x[a[i]+1]--;
x[b[i]]++;
}
}
for(ll i=1;i<=n;i++)x[i]+=x[i-1];
for(ll i=1;i<=n;i++){
x[i]+=h;
cout<<x[i]<<endl;
}
return 0;
}
心得
1.
#define ll long long
尽量多用define,多用longlong,有时候int太小
2.
为了维持代码的健壮性,一般在代码中都把const定的数加10或100