挖掘模式(上)

本文介绍了数据挖掘中的频繁项集概念,包括支持度和置信度的定义,以及Apriori和FP-growth算法。进一步讨论了闭模式和极大模式的挖掘方法,如项合并、子项集减枝和项跳过。此外,还探讨了模式评估的各种方法,如提升度、X^2检验、全置信度和余弦度量。
摘要由CSDN通过智能技术生成
*** 频繁项集 闭项集 关联规则
1) [X] 概念 [100%]
   1) [X] 支持度 support(A=>B) = P(A ∩ B)
   2) [X] 置信度 confidence(A=>B) = P(B | A)
   3) [X] 项集 项的集合
** 挖掘频繁模式方法
*** Aprioir FP-growth
1) [X] 概念与技术 [3/3]
   1) [X] Aprioir
      浪费空间与时间的做法
   2) [X] FP-growth
      构建类似字典树来整合空间与时间关系
   3) [X] 垂直数据格式挖掘频繁项集
** 挖掘闭模式和极大模式
1) [X] 概念与技术 [2/2]
   1) [X] 闭模式 [2/2]
      1) [X] 朴素方法
         频繁项集 的 完全集 , 删除是其他项集 的 真子集 , 并且 具有 相同 的 支持度
         这种 方法 开销 很大 .
      2) [X] 改进方法 [3/3]
         在 挖掘 过程 直接搜索 闭 频繁项集, 也就是 识别出 闭项集 然后 尽快对 搜索空间 减枝 .
         减枝 包括
         1) [X] 项合并
            X 的 每个 事物 包含 Y , 但是 不包含 Y 的 任何 真超集 . X U Y  成为 一个 闭频繁 项集 , 不必 搜索 包含 X 不 包含 Y 的 项集 .
         2) [X] 子项集 减枝
            X 是 Y 的 真子集 and support(X) == support(Y) 那么 X 与 X 在 集合 枚举树 中的所有后代 都不是 闭频繁项集 .
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值