*** 频繁项集 闭项集 关联规则
1) [X] 概念 [100%]
1) [X] 支持度 support(A=>B) = P(A ∩ B)
2) [X] 置信度 confidence(A=>B) = P(B | A)
3) [X] 项集 项的集合
** 挖掘频繁模式方法
*** Aprioir FP-growth
1) [X] 概念与技术 [3/3]
1) [X] Aprioir
浪费空间与时间的做法
2) [X] FP-growth
构建类似字典树来整合空间与时间关系
3) [X] 垂直数据格式挖掘频繁项集
** 挖掘闭模式和极大模式
1) [X] 概念与技术 [2/2]
1) [X] 闭模式 [2/2]
1) [X] 朴素方法
频繁项集 的 完全集 , 删除是其他项集 的 真子集 , 并且 具有 相同 的 支持度
这种 方法 开销 很大 .
2) [X] 改进方法 [3/3]
在 挖掘 过程 直接搜索 闭 频繁项集, 也就是 识别出 闭项集 然后 尽快对 搜索空间 减枝 .
减枝 包括
1) [X] 项合并
X 的 每个 事物 包含 Y , 但是 不包含 Y 的 任何 真超集 . X U Y 成为 一个 闭频繁 项集 , 不必 搜索 包含 X 不 包含 Y 的 项集 .
2) [X] 子项集 减枝
X 是 Y 的 真子集 and support(X) == support(Y) 那么 X 与 X 在 集合 枚举树 中的所有后代 都不是 闭频繁项集 .
1) [X] 概念 [100%]
1) [X] 支持度 support(A=>B) = P(A ∩ B)
2) [X] 置信度 confidence(A=>B) = P(B | A)
3) [X] 项集 项的集合
** 挖掘频繁模式方法
*** Aprioir FP-growth
1) [X] 概念与技术 [3/3]
1) [X] Aprioir
浪费空间与时间的做法
2) [X] FP-growth
构建类似字典树来整合空间与时间关系
3) [X] 垂直数据格式挖掘频繁项集
** 挖掘闭模式和极大模式
1) [X] 概念与技术 [2/2]
1) [X] 闭模式 [2/2]
1) [X] 朴素方法
频繁项集 的 完全集 , 删除是其他项集 的 真子集 , 并且 具有 相同 的 支持度
这种 方法 开销 很大 .
2) [X] 改进方法 [3/3]
在 挖掘 过程 直接搜索 闭 频繁项集, 也就是 识别出 闭项集 然后 尽快对 搜索空间 减枝 .
减枝 包括
1) [X] 项合并
X 的 每个 事物 包含 Y , 但是 不包含 Y 的 任何 真超集 . X U Y 成为 一个 闭频繁 项集 , 不必 搜索 包含 X 不 包含 Y 的 项集 .
2) [X] 子项集 减枝
X 是 Y 的 真子集 and support(X) == support(Y) 那么 X 与 X 在 集合 枚举树 中的所有后代 都不是 闭频繁项集 .