2019.9.6 note

2019.9.6 note

Meta-Learning with Implicit Gradients

Similar to paper darts, this work formulates Meta-learning as a two-level (inner/outer) optimization problem. To make the meta-learning process model agnostic, this work uses implicit gradients to optimiza the outer-level loss and uses a techique to approximate Hessian Matrix in the implicit gradients.

SoftTriple Loss: Deep Metric LearningWithout Triplet Sampling

  1. It shows that the softmax function is equivalent to the triplet loss function when every class has one center.
  2. When every class may have multiple centers, it proposes hard triple loss and shows it equivalence to triplet loss function.
  3. It proposes soft triplet loss function and uses a regularizer to adapt the number of centers. It sets a large center numbers and encourages similar centers to merge with each other.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值