2019.9.6 note
Meta-Learning with Implicit Gradients
Similar to paper darts, this work formulates Meta-learning as a two-level (inner/outer) optimization problem. To make the meta-learning process model agnostic, this work uses implicit gradients to optimiza the outer-level loss and uses a techique to approximate Hessian Matrix in the implicit gradients.
SoftTriple Loss: Deep Metric LearningWithout Triplet Sampling
- It shows that the softmax function is equivalent to the triplet loss function when every class has one center.
- When every class may have multiple centers, it proposes hard triple loss and shows it equivalence to triplet loss function.
- It proposes soft triplet loss function and uses a regularizer to adapt the number of centers. It sets a large center numbers and encourages similar centers to merge with each other.