题目描述
给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
输入输出样例
示例 1:
输入:s = "ab"
输出:[["a","b"]
示例 2:
输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/palindrome-partitioning
算法描述
分割回文串有几个问题需要我们解决。
如何分割字符串?
如何判断回文串?
首先,第一个问题,分割字符串,相当于拿若干个隔板将字符串分割为若干个部分,而且这些子串都是回文串,所以问题的关键是隔板的位置如何确定?最直观暴力的方法就是,取到隔板所有的位置,然后再判断被隔板分割的子串是否全部都为回文串。很显然的一点是,如果我们要找到所有可能的分割位置,那一定需要迭代完整个字符串。
比如对于样例1,开始让第一个隔板的位置为0,第二个隔板的位置为1,那么分割的子串就是[0, 1),也就是 ' a ',然后判断其是不是回文串,如果是,则说明这组隔板的位置可以,然后让第一个隔板的位置等于第二个隔板,然后让第二个隔板的位置等于第一个隔板的位置 + 1,也就是[1 , 2),那么分割的子串就是 ' b ',然后判断,所以这组隔板的位置也可以,然后继续移动第一个隔板,也就是 2 ,即到了字符串的末尾,说明这一组分割方案是可以的,即 'a', 'b'。
然后继续迭代第二个隔板,那么分割的子串就是[0, 2),就是 'ab',发现子串不是回文串,说明该隔板的位置不可以,则继续后移该隔板,也就是[1, 3),此时第二个隔板的位置到达字符串的末尾,说明这一组分割方案不行。
从上面的分析过程,可以很显然的看出,确定是否得到了一组分割方案就是看第一个隔板的最终位置,因为只有分割的子串为回文串时,第一个隔板才会移动,如果所有的隔板位置都是有效的,那么第一个隔板的位置一定会被移动到字符串的末尾。
而且可以发现,上述的过程跟回溯很像,一边横向迭代集合,一边移动隔板位置分割子串,一边记录分割方案。
实际上,其实切割问题类似于组合问题!我们每次确定好一个隔板的位置后,就会在剩下的子串中继续确定下一个隔板的位置。
所以我们可以按照回溯三部曲写出基本框架
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经填在的子串
}
}
然后,第二个问题就是如何判断回文串,这个就比较简单了,可以使用双指针的方法,也可以使用rervese()函数来判断。
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
不难写出完整的代码。
class Solution {
private:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经填在的子串
}
}
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
public:
vector<vector<string>> partition(string s) {
backtracking(s, 0);
return result;
}
};
算法优化
上面的代码还存在一定的优化空间, 在于如何更高效的计算一个子字符串是否是回文字串。
上述代码isPalindrome函数运用双指针的方法来判定对于一个字符串s, 给定起始下标和终止下标, 截取出的子字符串是否是回文字串。但是其中有一定的重复计算存在:
例如给定字符串"abcde", 在已知"bcd"不是回文字串时, 不再需要去双指针操作"abcde"而可以直接判定它一定不是回文字串。
具体来说, 给定一个字符串s, 长度为n, 它成为回文字串的充分必要条件是s[0] == s[n-1]且s[1:n-1]是回文字串。
我们如果熟悉动态规划这种算法的话, 就可以高效地事先一次性计算出, 针对一个字符串s, 它的任何子串是否是回文字串, 然后在我们的回溯函数中直接查询即可, 省去了判定这一步骤。
优化后的具体代码。