Z transformation

z变换

z变换的数学定义

一个信号 f ( t ) f(t) f(t) z z z 变换 F ( z ) F(z) F(z) 定义为:
F ( z ) = ∑ − ∞ + ∞ f ( k ) z − k = Z [ f ( k ) ] F(z)=\sum_{-\infty}^{+\infty}f(k)z^{-k}=Z[f(k)] F(z)=+f(k)zk=Z[f(k)]

式中,信号 f ( k ) f(k) f(k) 则是 F ( z ) F(z) F(z) 的反 z z z 变换

工程中使用的信号往往都是因果信号。对于因果信号 f ( k ) ε ( k ) f(k)\varepsilon(k) f(k)ε(k),有
F ( z ) = ∑ 0 + ∞ f ( k ) z − k = Z [ f ( k ) ] F(z)=\sum_{0}^{+\infty}f(k)z^{-k}=Z[f(k)] F(z)=0+f(k)zk=Z[f(k)]

上式被称为单边 z z z 变换。

对于单边 z z z 变换对,可简记为 f ( k )    ⟺    F ( z ) f(k)\iff F(z) f(k)F(z)

z变换的收敛域

为了保证 z z z 变换 F ( z ) F(z) F(z)存在,即满足级数收敛,把所有使级数收敛的 z z z 值的集合称为 z z z 变换的收敛域(ROC)。

由于单边拉氏变换的定义为
F ( z ) = ∑ 0 + ∞ f ( k ) z − k = Z [ f ( k ) ] F(z)=\sum_{0}^{+\infty}f(k)z^{-k}=Z[f(k)] F(z)=0+f(k)zk=Z[f(k)]

如果 F ( z ) F(z) F(z)要存在,则等式右边的级数要收敛,就需要有 lim ⁡ k → + ∞ f ( k ) z − k = 0 \lim\limits_{k\to+\infty}f(k)z^{-k}=0 k+limf(k)zk=0,所以 z z z 变换存在的收敛域为 ∣ z ∣ > ∣ a ∣ |z|>|a| z>a a a a 是根据信号 f ( t ) f(t) f(t)确定的常系数,如下图所示
z变换收敛域

关于收敛域的说明

对于单边 z z z 变换可不说明其收敛域;而对于双边 z z z 变换,应指明其收敛域。

常见信号的 z 变换对(因果信号)

  1. 指数类信号 f ( k ) = a k ε ( k ) f(k)=a^{k}\varepsilon(k) f(k)=akε(k)
    a k ε ( k )    ⟺    a^{k}\varepsilon(k)\iff akε(k) z z − a \Large\frac {z} {z-a} zaz
  2. 单位阶跃信号 f ( k ) = ε ( k ) f(k)=\varepsilon(k) f(k)=ε(k)
    ε ( k )    ⟺    \varepsilon(k)\iff ε(k) z z − 1 \Large\frac {z} {z-1} z1z
  3. 冲激信号 f ( k ) = δ ( k ) f(k)=\delta(k) f(k)=δ(k)
    δ ( k )    ⟺    \delta(k)\iff δ(k) 1 1 1

余弦和正弦序列的 z z z 变换,先将其使用欧拉公式转换,再利用已知序列的 z z z 变换结合线性性质即可求解。

z 变换的性质

  1. 线性
    a 1 f 1 ( k ) + a 2 f 2 ( k )    ⟺    a_1f_1(k)+a_2f_2(k)\iff a1f1(k)+a2f2(k) a 1 F 1 ( z ) + a 2 F 2 ( z ) a_1F_1(z)+a_2F_2(z) a1F1(z)+a2F2(z)
  2. 右移
    f ( k − m ) ε ( k − m )    ⟺    f(k-m)\varepsilon(k-m)\iff f(km)ε(km) z − m F ( z ) z^{-m}F(z) zmF(z),称为整体移序
    f ( k − m ) ε ( k )    ⟺    f(k-m)\varepsilon(k)\iff f(km)ε(k) z − m [ F ( z ) z^{-m}[F(z) zm[F(z) + ∑ k = − m − 1 f ( k ) z − k ] +\sum^{-1}_{k=-m}f(k)z^{-k}] +k=m1f(k)zk],称为非整体移序
  3. 左移
    f ( k + m ) ε ( k )    ⟺    f(k+m)\varepsilon(k)\iff f(k+m)ε(k) z m [ F ( z ) z^{m}[F(z) zm[F(z) − ∑ k = 0 m − 1 f ( k ) z − k ] -\sum^{m-1}_{k=0}f(k)z^{-k}] k=0m1f(k)zk]
  4. z z z域尺度变换
    a k f ( k ) ε ( k )    ⟺    a^kf(k)\varepsilon(k)\iff akf(k)ε(k) F ( z a F(\Large\frac z a F(az ) ) )
  5. z z z域微分
    ( − k ) m f ( k )    ⟺    (-k)^mf(k)\iff (k)mf(k) z m F ( m ) ( z ) z^mF^{(m)}(z) zmF(m)(z)
  6. 时域卷积
    f 1 ( k ) ∗ f 2 ( k )    ⟺    f_1(k)*f_2(k)\iff f1(k)f2(k) F 1 ( z ) F 2 ( z ) F_1(z)F_2(z) F1(z)F2(z)
  7. 初值定理
    f ( 0 ) = lim ⁡ z → ∞ F ( z ) f(0)=\lim\limits_{z\to\infty}F(z) f(0)=zlimF(z)
  8. 终值定理
    f ( ∞ ) = lim ⁡ z → 1 ( z − 1 ) F ( z ) f(\infty)=\lim\limits_{z\to1}(z-1)F(z) f()=z1lim(z1)F(z)

注意:终值定理的适用条件是 F ( z ) F(z) F(z)的极点必须位于单位圆内(在单位圆上只能位于 z = + 1 z=+1 z=+1 点且是一阶极点),否则终值不存在。

z 反变换

z z z 反变换的方法一般有两种:第一种是把 z z z 变换式展开为 z − 1 z^{-1} z1 的幂级数,由此可以直接得到一个原函数的序列;第二种是把 z z z 变换式展开为它的部分分式之和,每一个部分分式都是较简单的基本函数形式,以便把它们分别进行反变换。

幂级数展开法

根据 z z z 变换的定义
F ( z ) = ∑ 0 + ∞ f ( k ) z − k F(z)=\sum_{0}^{+\infty}f(k)z^{-k} F(z)=0+f(k)zk
若我们把 F ( z ) F(z) F(z) 展开成 z − 1 z^{-1} z1 的幂级数之和,则该级数的各系数就是对应序列 f ( k ) f(k) f(k) 的值。

展开的方法可使用长除法
长除法
注意:用这种方法可以帮助我们快速求得原函数序列开头若干个有限项的值,但使用该方法无法得到序列 f ( k ) f(k) f(k)的解析表达式。

部分分式展开法

设有理分式
F ( z ) = F(z)= F(z)= N ( z ) D ( z ) \Large\frac {N(z)} {D(z)} D(z)N(z) = b m z m + … + b 1 z + b o a n z n + … + a 1 z + a o =\Large\frac {b_mz^m+…+b_1z+b_o} {a_nz^n+…+a_1z+a_o} =anzn++a1z+aobmzm++b1z+bo

m > = n m >= n m>=n,即 F ( z ) F(z) F(z)为假分式时,我们可以通过长除法将 F ( z ) F(z) F(z)分解为常数项与真分式的和,即 F ( z ) = F(z)= F(z)= P + N o ( z ) D ( z ) P + \Large\frac {N_o(z)} {D(z)} P+D(z)No(z)

也可以选择先将 F ( z ) z \Large\frac {F(z)} {z} zF(z)部分分式展开,求得待定系数后再乘以 z z z,这时上式为
F ( z ) z = \Large\frac {F(z)} {z}= zF(z)= N ( z ) z D ( z ) \Large\frac {N(z)} {zD(z)} zD(z)N(z) = b m z m + … + b 1 z + b o z ( a n z n + … + a 1 z + a o ) =\Large\frac {b_mz^m+…+b_1z+b_o} {z(a_nz^n+…+a_1z+a_o)} =z(anzn++a1z+ao)bmzm++b1z+bo

式中 m < n + 1 m < n + 1 m<n+1,对于真分式的部分分式展开,步骤就与拉氏反变换一样了,即令 D ( z ) = 0 D(z)=0 D(z)=0,得到极点 p i p_i pi,然后根据极点将 F ( z ) z \Large\frac {F(z)} {z} zF(z)展开,最后求反变换。

现根据极点的几种情况来进行讨论。

  1. 单实根情况
    我们就可将 F ( z ) z \Large\frac {F(z)} {z} zF(z)分解为
    F ( z ) z \Large\frac {F(z)} {z} zF(z) = K 0 z =\Large\frac {K_0} {z} =zK0 + K 1 z − p 1 +\Large\frac {K_1} {z-p_1} +zp1K1 + K 2 z − p 2 +\Large\frac {K_2} {z-p_2} +zp2K2 + … … + K n z − p n +……+\Large\frac {K_n} {z-p_n} +……+zpnKn

    其中, K i K_i Ki为待定系数,可以利用留数的方法求得
    K i = ( z − p i ) K_i=(z-p_i) Ki=(zpi) F ( z ) z \Large\frac {F(z)} {z} zF(z) ∣ z = p i |_{z=p_i} z=pi

    由于 K i z − p i    ⟺    \Large\frac {K_i} {z-p_i}\iff zpiKi K i ( p i ) k ε ( k ) K_i{(p_i)}^{k}\varepsilon(k) Ki(pi)kε(k)

    所以原函数 f ( k ) f(k) f(k)
    f ( k ) = K o δ ( k ) + ∑ i = 1 n K i ( p i ) k ε ( k ) f(k)=K_o\delta(k)+\sum_{i=1}^nK_i (p_i)^{k}\varepsilon(k) f(k)=Koδ(k)+i=1nKi(pi)kε(k)

  2. 多重根情况
    D ( z ) = 0 D(z)=0 D(z)=0 z = a z=a z=a r r r阶重极点,例如
    F ( z ) = N ( z ) ( z − a ) r F(z)=\Large \frac {N(z)} {(z-a)^r} F(z)=(za)rN(z)

    可将 F ( z ) z \Large\frac {F(z)} {z} zF(z)分解为
    F ( z ) z \Large\frac {F(z)} {z} zF(z) = K 1 ( z − a ) r =\Large\frac {K_1} {(z-a)^r} =(za)rK1 + K 2 ( z − a ) r − 1 +\Large\frac {K_2} {(z-a)^{r-1}} +(za)r1K2 + … … + K r ( z − a ) +……+\Large\frac {K_r} {(z-a)} +……+(za)Kr

    其系数为
    K i = K_i= Ki= 1 ( i − 1 ) ! \Large\frac {1} {(i-1)!} (i1)!1 ⋅ \cdot d i − 1 d z i − 1 \Large\frac {d^{i-1}} {dz^{i-1}} dzi1di1 [ ( z − a ) r [(z-a)^r [(za)r F ( z ) z \Large\frac {F(z)} {z} zF(z) ] ∣ z = a ]|_{z=a} ]z=a

  3. 共轭复根情况
    假设此时 D ( z ) D(z) D(z)中含有一对共轭复根, p 1 , 2 = c ± j d p_{1,2} = c \pm jd p1,2=c±jd,则可将 F ( z ) z \Large\frac {F(z)} {z} zF(z)分解为
    F ( z ) z \Large\frac {F(z)} {z} zF(z) = K 1 z − ( c + j d ) =\Large\frac {K_1} {z-(c+jd)} =z(c+jd)K1 + K 2 z − ( c − j d ) +\Large\frac {K_2} {z-(c-jd)} +z(cjd)K2

    待定系数的求法与单极点的方法一样,使用留数的方法。如
    K 1 = ( z − c − j d ) K_1=(z-c-jd) K1=(zcjd) F ( z ) z \Large\frac {F(z)} {z} zF(z) ∣ z = c + j d |_{z=c+jd} z=c+jd = A + j B =A+jB =A+jB

    由于是共轭复根,所以有 K 2 = K 1 ∗ = A − j B K_2=K_1^*=A-jB K2=K1=AjB

差分方程的 z 变换解

差分方程的解

z z z 变换将描述离散系统的时域差分方程变换为 z z z 域的代数方程,从而简化了运算。我们在使用 z z z 变换求解差分方程时,主要是应用之前介绍的 z z z 变换的左移性质。

例如,对于某一系统描述的差分方程,有
a 2 y ( k + 2 ) + a 1 y ( k + 1 ) + a o y ( k ) = b 2 f ( k + 2 ) + b 1 f ( k + 1 ) + b 0 f ( k ) a_2y(k+2)+a_1y(k+1)+a_oy(k)=b_2f(k+2)+b_1f(k+1)+b_0f(k) a2y(k+2)+a1y(k+1)+aoy(k)=b2f(k+2)+b1f(k+1)+b0f(k)

  1. 已知零输入初始值 y z i ( 0 ) y_{zi}(0) yzi(0) y z i ( 1 ) y_{zi}(1) yzi(1)

    对等式左边取部分移序,即
    y ( k + m )    ⟺    y(k+m)\iff y(k+m) z m [ Y ( z ) z^{m}[Y(z) zm[Y(z) − ∑ k = 0 m − 1 y z i ( k ) z − k ] -\sum^{m-1}_{k=0}y_{zi}(k)z^{-k}] k=0m1yzi(k)zk]

    对等式右边取整体移序,即
    f ( k + m )    ⟺    f(k+m)\iff f(k+m) z m F ( z ) z^{m}F(z) zmF(z)

  2. 已知系统初始值 y ( 0 ) y(0) y(0) y ( 1 ) y(1) y(1)

    我们对等式左、右两边都取部分移序,即
    y ( k + m )    ⟺    y(k+m)\iff y(k+m) z m [ Y ( z ) z^{m}[Y(z) zm[Y(z) − ∑ k = 0 m − 1 y ( k ) z − k ] -\sum^{m-1}_{k=0}y(k)z^{-k}] k=0m1y(k)zk]

    f ( k + m )    ⟺    f(k+m)\iff f(k+m) z m [ F ( z ) z^{m}[F(z) zm[F(z) − ∑ k = 0 m − 1 f ( k ) z − k ] -\sum^{m-1}_{k=0}f(k)z^{-k}] k=0m1f(k)zk]

整理一下上述变换后的结果,即可得到 z z z 域下全响应 Y ( z ) Y(z) Y(z)的表达式

对于第一种情况,说明外加激励信号对初始值没有影响;对于第二种情况,说明外加激励信号对初始值有贡献。即当题目给出的初始值不是真正的初始值 y z i y_{zi} yzi 时,要考虑 f ( k ) f(k) f(k) 对初始值的贡献,所以要对差分方程右边进行非整体移序的 z z z 变换。

系统函数

(与连续系统的系统函数相类似)
设输出信号为 y z s ( k ) y_{zs}(k) yzs(k),输入信号为 f ( k ) f(k) f(k),则系统函数可表示为
H ( s ) = H(s)= H(s)= 零状态响应的 z 变换 激励信号的 z 变换 \large\frac {零状态响应的 z 变换} {激励信号的 z 变换} 激励信号的z变换零状态响应的z变换 = Y z s ( z ) F ( z ) =\Large\frac {Y_{zs}(z)} {F(z)} =F(z)Yzs(z)

需要注意以下几点:
1.系统函数是系统本身的特性,系统一经创建就确定了系统函数,与具体的输入信号无关;
2.系统函数是在所有初始状态值均为零的情况下得出的;

在离散系统的时域分析时,零状态响应是冲激响应与激励信号的卷积。即
y z s ( k ) = h ( k ) ∗ f ( k ) y_{zs}(k)=h(k)*f(k) yzs(k)=h(k)f(k)

根据拉氏变换的时域卷积定理,可将上式表示为
Y z s ( z ) = H ( z ) F ( z ) Y_{zs}(z)=H(z)F(z) Yzs(z)=H(z)F(z)

所以我们可得到系统函数与冲激响应是一对 z z z 变换对。即
h ( k )    ⟺    H ( z ) h(k)\iff H(z) h(k)H(z)

复指数信号 z k z^k zk称为离散系统的本征信号,与连续系统下复指数信号 e s t e^{st} est是本征信号一样

求解系统全响应的方法

  1. 利用 z z z 变换求出 z z z 域下 Y ( z ) Y(z) Y(z)的表达式,再通过 z z z 反变换得到全响应 y ( k ) y(k) y(k)
  2. 利用系统函数 H ( z ) H(z) H(z),根据 Y z s ( z ) = H ( z ) F ( z ) Y_{zs}(z)=H(z)F(z) Yzs(z)=H(z)F(z)求得 Y z s ( z ) Y_{zs}(z) Yzs(z),再通过 z z z 反变换求出零状态响应 y z s ( k ) y_{zs}(k) yzs(k),然后利用时域分析的方法求出零输入响应 y z i ( k ) y_{zi}(k) yzi(k),二者相加既是全响应 y ( k ) = y z i ( k ) + y z s ( k ) y(k)=y_{zi}(k)+y_{zs}(k) y(k)=yzi(k)+yzs(k)

系统函数与系统特性

系统函数的零点和极点

H ( z ) = H(z)= H(z)= B ( z ) A ( z ) \Large\frac {B(z)} {A(z)} A(z)B(z) = b m z m + … + b 1 z + b o a n z n + … + a 1 z + a o =\Large\frac {b_mz^m+…+b_1z+b_o} {a_nz^n+…+a_1z+a_o} =anzn++a1z+aobmzm++b1z+bo

上式可以表示为
H ( z ) = H(z)= H(z)= k ∏ i = 1 m ( z − z i ) ∏ j = 1 n ( z − p j ) k\frac {\displaystyle\prod_{i=1}^{m}(z-z_i)} {\displaystyle\prod_{j=1}^{n}(z-p_j)} kj=1n(zpj)i=1m(zzi)

其中, z i z_i zi为系统函数 H ( z ) H(z) H(z)的零点, p j p_j pj为系统函数 H ( z ) H(z) H(z)的极点。

零极点分布与冲激响应

当系统函数为有理真分式且具有单极点时,系统函数可按部分分式展开为
H ( z ) H(z) H(z) = ∑ i = 1 n z K i z − p i =\Large\sum_{i=1}^n\frac {zK_i} {z-p_i} =i=1nzpizKi

对其进行 z z z 反变换,即可得到系统的冲激响应为
h ( k ) h(k) h(k) = ∑ i = 1 n K i ( p i ) k ε ( k ) =\sum_{i=1}^nK_i(p_i)^{k}\varepsilon(k) =i=1nKi(pi)kε(k)

从上式可以看出,冲激响应 h ( k ) h(k) h(k)的性质完全由系统函数 H ( z ) H(z) H(z)的极点 p i p_i pi 决定(即系统的时间特性完全由其极点分布决定)。 p i p_i pi 称为系统的自然频率或者固有频率。而待定系数 K i K_i Ki 则由零点与极点共同决定。

系统的稳定性

渐近稳定(内部稳定性)
~ z z z
~系统函数 H ( z ) H(z) H(z)的极点 p i p_i pi 全部位于 z z z 平面的单位圆内(不包括单位圆本身),则系统是渐近稳定的
~系统函数 H ( z ) H(z) H(z)在单位圆上有单极点,则系统是临界稳定
~其余情况,系统都是不稳定的

系统的强迫响应

(与连续系统时相类似)

假设系统函数 H ( z ) H(z) H(z)
H ( z ) H(z) H(z) = H o ∏ i = 1 m ( z − z i ) ∏ j = 1 n ( z − p j ) =H_o\frac {\displaystyle\prod_{i=1}^{m}(z-z_i)} {\displaystyle\prod_{j=1}^{n}(z-p_j)} =Hoj=1n(zpj)i=1m(zzi)

输入信号的 z z z 变换为
F ( z ) F(z) F(z) = F o ∏ l = 1 u ( z − z l ) ∏ k = 1 v ( z − p k ) =F_o\frac {\displaystyle\prod_{l=1}^{u}(z-z_l)} {\displaystyle\prod_{k=1}^{v}(z-p_k)} =Fok=1v(zpk)l=1u(zzl)

H ( z ) H(z) H(z) F ( z ) F(z) F(z)没有相同的极点,则系统的零状态响应可表示为
所以就有 Y z s ( z ) = H ( z ) F ( z ) Y_{zs}(z)=H(z)F(z) Yzs(z)=H(z)F(z) = K ∏ i = 1 m ( z − z i ) ∏ j = 1 n ( z − p j ) =K\frac {\displaystyle\prod_{i=1}^{m}(z-z_i)} {\displaystyle\prod_{j=1}^{n}(z-p_j)} =Kj=1n(zpj)i=1m(zzi)    ⋅    \;\Large\cdot\; ∏ l = 1 u ( z − z l ) ∏ k = 1 v ( z − p k ) \frac {\displaystyle\prod_{l=1}^{u}(z-z_l)} {\displaystyle\prod_{k=1}^{v}(z-p_k)} k=1v(zpk)l=1u(zzl) = ∑ i = 1 n z K i z − p i =\Large\sum_{i=1}^n\frac {zK_i} {z-p_i} =i=1nzpizKi + ∑ k = 1 v z K k z − p k +\Large\sum_{k=1}^v\frac {zK_k} {z-p_k} +k=1vzpkzKk = Y h ( z ) + Y p ( z ) =Y_{h}(z)+Y_p(z) =Yh(z)+Yp(z)

由上式可以知道, Y z s ( z ) Y_{zs}(z) Yzs(z)的极点包含两部分,一部分是 H ( z ) H(z) H(z)的极点 p i p_i pi,另一部分是 F ( z ) F(z) F(z)的极点 p k p_k pk Y h ( z ) Y_{h}(z) Yh(z) H ( z ) H(z) H(z)的极点 p i p_i pi决定, Y p ( z ) Y_p(z) Yp(z) F ( z ) F(z) F(z)的极点 p k p_k pk决定。

再进行反变换即可得到强迫响应 y p ( k ) y_p(k) yp(k)与由激励决定的部分自由响应 y h ( k ) y_{h}(k) yh(k)
y z s ( k ) = y h ( k ) + y p ( k ) = y_{zs}(k)=y_{h}(k)+y_{p}(k)= yzs(k)=yh(k)+yp(k)= ∑ i = 1 n K i ( p i ) k ε ( k ) \sum_{i=1}^nK_i(p_i)^{k}\varepsilon(k) i=1nKi(pi)kε(k) + ∑ k = 1 v K k ( p k ) k ε ( k ) +\sum_{k=1}^vK_k(p_k)^{k}\varepsilon(k) +k=1vKk(pk)kε(k)

在这里插入图片描述

一定要记住下面这个结论!!!
若输入信号为 f ( k ) = a k ε ( k ) f(k)=a^{k}\varepsilon(k) f(k)=akε(k),则系统的强迫响应为 y p ( k ) = H ( a ) a k ε ( k ) y_p(k)=H(a)a^{k}\varepsilon(k) yp(k)=H(a)akε(k)

系统实现

系统框图是系统模型的另一种形式,系统框图也称为系统模拟图。

系统实现方式

  1. 直接形式(即直接根据系统函数的表达式来实现系统)
  2. 级联形式(将系统函数 H ( z ) H(z) H(z)分为多个子系统相乘的形式)
  3. 并联形式(将系统函数 H ( z ) H(z) H(z)分为多个子系统相加的形式)

不同的系统实现方式,本质上是系统函数的不同表达方式。

系统实现的过程
  1. 确定系统实现的方式;
  2. 对系统函数 H ( z ) H(z) H(z)进行相应的转换;
  3. 对于单个系统(每个子系统),利用中间变量 W ( z ) W(z) W(z)表示出系统的激励 F ( z ) F(z) F(z)与响应 Y ( z ) Y(z) Y(z)
  4. 利用基本的模拟单元画出系统框图。
由系统框图得到系统函数的过程
  1. 总是选取与激励信号相连接的加法器的输出作为中间变量 W ( z ) W(z) W(z)
  2. 利用中间变量 W ( z ) W(z) W(z)表示出单个系统(每个子系统)的激励 F ( z ) F(z) F(z)与响应 Y ( z ) Y(z) Y(z)
  3. 根据系统实现的方式以及 H ( z ) = Y ( z ) F ( z ) H(z)=\Large\frac {Y(z)} {F(z)} H(z)=F(z)Y(z),消除中间变量 W ( z ) W(z) W(z)即可得到系统函数 H ( s ) H(s) H(s)

信号流图与梅森公式

也与连续系统相类似,这里不再赘述。

系统的频率响应

所谓“频率响应”指的是系统在正弦信号激励之下稳态响应随信号频率的变化情况。包括幅度随频率的响应,即幅频特性;相位随频率的响应,即相频特性。

z = e j Ω z=e^{j\Omega} z=ejΩ时,系统函数 H ( z ) H(z) H(z)就变成了系统频率特性 H ( e j Ω ) H(e^{j\Omega}) H(ejΩ)。即
H ( e j Ω ) = ∣ H ( e j Ω ) ∣ e j φ ( Ω ) H(e^{j\Omega})=|H(e^{j\Omega})|e^{j\varphi(\Omega)} H(ejΩ)=H(ejΩ)ejφ(Ω)

可以看出 ∣ H ( e j Ω ) ∣ |H(e^{j\Omega})| H(ejΩ) φ ( Ω ) \varphi(\Omega) φ(Ω)都是随频率 Ω \Omega Ω 变化的函数,所以我们可以画出幅频特性 ∣ H ( e j Ω ) ∣ |H(e^{j\Omega})| H(ejΩ)和相频特性 φ ( Ω ) \varphi(\Omega) φ(Ω)的图像,而从频率响应的图中很容易表述一个系统对各种频率的正弦波作出的响应。因此,一个系统的频率响应就代表了它的滤波特性

系统函数零极点与滤波器设计

几何作图法确定频率响应

利用系统函数的零极点分布并借助于几何作图的方法可以确定系统的频率响应。
下面介绍这种方法的原理

z = e j Ω z=e^{j\Omega} z=ejΩ时,系统函数 H ( z ) H(z) H(z)就变成了系统频率特性
H ( e j Ω ) H(e^{j\Omega}) H(ejΩ) = K ∏ ( e j Ω − z i ) ∏ ( e j Ω − p j ) =K\frac {\displaystyle\prod(e^{j\Omega}-z_i)} {\displaystyle\prod(e^{j\Omega}-p_j)} =K(ejΩpj)(ejΩzi)

z z z 平面上,任一复数都可以用一向量来表示,如某一极点 p j p_j pj 可以看成自坐标原点指向该极点的向量。所以对于上式中的 ( e j Ω − p j ) (e^{j\Omega}-p_j) (ejΩpj) ,就相当于是两个向量相减,其对应的结果仍然是一个向量。

而根据欧拉公式,我们可以将复数向量写成坐标式,即模和幅角的形式,那么就有
e j Ω − p j = M j Θ j e^{j\Omega}-p_j=M_j\phase{\varTheta_j} ejΩpj=MjΘj
e j Ω − z i = N i ϕ i e^{j\Omega}-z_i=N_i\phase{\phi_i} ejΩzi=Niϕi

进而就可以将系统频率特性的表达式转换为
H ( e j Ω ) H(e^{j\Omega}) H(ejΩ) = K ∏ ( e j Ω − z i ) ∏ ( e j Ω − p j ) =K\frac {\displaystyle\prod(e^{j\Omega}-z_i)} {\displaystyle\prod(e^{j\Omega}-p_j)} =K(ejΩpj)(ejΩzi) = K ∏ N i ∏ M j =K\frac {\displaystyle\prod N_i} {\displaystyle\prod M_j} =KMjNi ϕ i − Θ j \phase{\phi_i-\varTheta_j} ϕiΘj

Ω \Omega Ω 0 → 2 π 0\rarr2\pi 02π 时( Ω \Omega Ω在单位圆上从 0 ° 0° 开始逆时针移动)变化时, H ( e j Ω ) H(e^{j\Omega}) H(ejΩ)的幅值与相位也随之变化。其中, ∣ H ( e j Ω ) ∣ |H(e^{j\Omega})| H(ejΩ) = ∏ N i ∏ M j =\frac {\displaystyle\prod N_i} {\displaystyle\prod M_j} =MjNi随频率的变化称为幅频特性 φ ( Ω ) = \varphi(\Omega)= φ(Ω)= ϕ i − Θ j \phase{\phi_i-\varTheta_j} ϕiΘj 随频率的变化称为相频特性

显然,适当地配置极点和零点能获取各种不同的频率选择特性,可以利用这些观察结果设计LPF、HPF、BPF、BSF。

根据零极点分布图判断系统的滤波特性(幅频特性)

首先大致判断出幅频特性 H ∣ ( e j Ω ) ∣ H|(e^{j\Omega})| H(ejΩ)的形式,假设 z z z 平面的单位圆上存在一点 P P P H ∣ ( e j Ω ) ∣ H|(e^{j\Omega})| H(ejΩ)的分子是点 P P P到所有零点 z i z_i zi距离的乘积,分母是点 P P P到所有极点 p j p_j pj距离的乘积。

假设有一系统如下图所示
在这里插入图片描述
则可设 ∣ H ( e j Ω ) ∣ |H(e^{j\Omega})| H(ejΩ) = N 1 N 2 M 1 M 2 =\Large\frac {N_1N_2} { M_1M_2} =M1M2N1N2,然后令 P P P从单位圆上的 0 ° 0° 开始逆时针转动,根据 ∣ H ( e j Ω ) ∣ |H(e^{j\Omega})| H(ejΩ)的变化判断系统的滤波特性。其实根据幅频特性的表达分式,我们可以得出一个结论,就是离极点近的地方就是通带,离零点近的地方就是阻带。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PL_涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值