Misere Nim (Nim博弈)

Misere Nim (Nim博弈):http://acm.hust.edu.cn/vjudge/contest/view.action?cid=112620#problem/B 传送门:nefu

题面描述:

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, each pile containing one or more stones. The players alternate turns and in each turn a player can select one of the piles and can remove as many stones from that pile unless the pile is empty. In each turn a player must remove at least one stone from any pile. Alice starts first. The player who removes the last stone loses the game.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer k (1 ≤ k ≤ 100). The next line contains k space separated integers denoting the number of stones in each pile. The number of stones in a pile lies in the range [1, 109].

Output

For each case, print the case number and 'Alice' if Alice wins otherwise print 'Bob'.

Sample Input

3

4

2 3 4 5

5

1 1 2 4 10

1

1

Sample Output

Case 1: Bob

Case 2: Alice

Case 3: Bob


题目大意:

在K堆石子的任意堆中任取>0个石子,Alice为先手,Bob为后手,先取完者输掉比赛。

题目分析:

此题满足Nim博弈的条件,:1、有两名选手;2、两名选手交替对游戏进行移动(move),每次一步,选手可以在(一般而言)有限的合法移动集合中任选一种进行移动;3、对于游戏的任何一种可能的局面,合法的移动集合只取决于这个局面本身,不取决于轮到哪名选手操作、以前的任何操作、骰子的点数或者其它什么因素; 4、如果轮到某名选手移动,且这个局面的合法的移动集合为空(也就是说此时无法进行移动),则这名选手负。根据这个定义,很多日常的游戏并非ICG。例如象棋就不满足条件3,因为红方只能移动红子,黑方只能移动黑子,合法的移动集合取决于轮到哪名选手操作。

此题属于Nim博弈的第二种题型,其中属于必胜点的情况有:S1,S2,T0(即非奇异形式下,充裕点的个数>0个和奇异形式下,充裕点的个数==0个);属于必败点的情况有:S0,T2。


代码实现:

#include <iostream>

using namespace std;

long long data;
int main()
{
    int t,num,ans,k;
    int casenum=0;
    cin>>t;
    while(t--)
    {
        num=0;
        ans=0;
        cin>>k;
        for(int i=0;i<k;i++)
        {
            cin>>data;
            if(data>=2)
            num++;    //充裕堆的数量
            ans=ans^data;
        }
        if((ans!=0&&num!=0)||(ans==0&&num==0))  //S1,S2,T0必胜
        cout<<"Case "<<++casenum<<": Alice"<<endl;
        else
        cout<<"Case "<<++casenum<<": Bob"<<endl; //S0,T2必败
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值