算法设计与分析实验四回溯法+子集树+最大团+0-1背包问题求解

本文通过回溯法探讨如何解决子集树构造、最大团寻找以及0-1背包问题。实验详细介绍了算法设计与分析过程,展示了回溯法在这些问题中的应用策略。
摘要由CSDN通过智能技术生成

1.题目描述:(类0-1背包问题)

有一群小鸭子要漂洋过海,但是这n只小鸭子都不会游泳,而且他们只有两艘载重量为c1和c2的船,其中小鸭子i的重量为wi,小鸭子们都很团结,他们要么一起过海,要么一个都不过,试判断这n只小鸭子能否全部过海,该如何分配他们的位置。

输入:n,c1,c2三个整数表示鸭子的重量和两艘船的载重量;

Wi(i=1,…,n)共n个整数表示每只小鸭子的重量。

输出:鸭子们能否漂洋过海,若能,则输出两只船上分别要放哪几只小鸭子。

 

采用回溯法子集树来实现:

 

代码实现:

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

int n,w[100],c1,c2;
int r;//表示未装入船1中的重量
int bestw;//表示最多放入船中的重量
int x[100],bestx[100];
int cw;//当前载重量

void bt(int t)
{
    if(t>n)
    {
        if(cw>bestw)
        {
            bestw=cw;
            for(int i=1; i<=n; i++)
            {
                bestx[i]=x[i];
            }
        }
        ret
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值