有限域的定义
有 限 域 满 足 以 下 性 质 : 有 两 种 运 算 ( + 和 × ) , 在 该 集 合 上 封 闭 这 两 种 运 算 满 足 交 换 和 结 合 律 有 单 位 元 e 有 逆 元 a − 1 有 乘 法 对 加 法 的 分 配 律 a × ( b + c ) = a × b + a × c 有限域满足以下性质:\\ 有两种运算(+和\times),在该集合上封闭\\ 这两种运算满足交换和结合律\\ 有单位元e\\ 有逆元a^{-1}\\ 有乘法对加法的分配律a\times(b+c)=a\times b+a\times c\\ 有限域满足以下性质:有两种运算(+和×),在该集合上封闭这两种运算满足交换和结合律有单位元e有逆元a−1有乘法对加法的分配律a×(b+c)=a×b+a×c
当元素个数有限时称有限域.
常见的无限域有
Q
,
R
,
C
\mathbb{Q},\mathbb{R},\mathbb{C}
Q,R,C.
子域和扩域
如果 F F F的子集 F 0 F_0 F0对加法,乘法封闭(至少有0,e),并具有域的其他性质(除了封闭,基本上都是对运算规则的要求,所以也谈不上,只是需要注意),则称 F 0 F_0 F0为子域.
几个比较典型的域的记法
-
Q
[
2
]
Q[\sqrt{2}]
Q[2]
也就是 { a + 2 b ∣ a , b ∈ Q } \{a+\sqrt 2 b|a,b\in\mathbb{Q}\} {a+2b∣a,b∈Q},加法和乘法是典型的加法和乘法. -
R
[
−
2
]
R[\sqrt{-2}]
R[−2]
{ a + − 2 b ∣ a , b ∈ R } \{a+\sqrt {-2}\ b|a,b\in\mathbb{R}\} {a+−2 b∣a,b∈R},成员实际上在虚数域上,等于 { a + 2 b i ∣ a , b ∈ R } \{a+2b\ i|a,b\in\mathbb{R}\} {a+2b i∣a,b∈R}同样加法和乘法是典型的加法和乘法. -
Z
m
\mathbb{Z}_m
Zm
{ 1 , 2 , . . . , m − 1 } \{1,2,...,m-1\} {1,2,...,m−1},m为质数
m必须为质数:否则不能成域:逆元有问题
域的性质
- ∀ a ∈ F , 0 × a = a × 0 = 0 \forall a\in\mathbb{F},0\times a=a\times 0=0 ∀a∈F,0×a=a×0=0
-
∀
a
,
b
∈
F
,
i
f
a
b
=
0
,
a
=
0
o
r
b
=
0
\forall a,b\in\mathbb{F},if\ ab=0,a=0\ or\ b=0
∀a,b∈F,if ab=0,a=0 or b=0
上面两个应该很明显.
但是要注意基于域的定义, a × b a\times b a×b不一定等同于b个a相加.这一点要尤为注意.
映射和同构
映射就是一个域到另一个域的一一对应关系.类似于一元函数.
同构
F
,
k
为
两
个
域
,
i
f
∃
M
a
p
p
i
n
g
δ
,
∀
e
l
e
m
e
n
t
a
,
b
∈
F
,
有
δ
(
a
+
b
)
=
δ
(
a
)
+
δ
(
b
)
δ
(
a
×
b
)
=
δ
(
a
)
×
δ
(
b
)
称
δ
(
x
)
是
F
,
k
上
的
同
构
映
射
,
且
F
,
k
同
构
.
\mathbb{F},\mathbb{k}为两个域,\\if \exists Mapping \delta,\forall element\ a,b\in\mathbb{F},有\\ \delta(a+b)=\delta(a)+\delta(b)\\ \delta(a\times b)=\delta(a)\times \delta(b)\\ 称\delta (x)是\mathbb{F},\mathbb{k}上的同构映射,且\mathbb{F},\mathbb{k}同构.\\
F,k为两个域,if∃Mappingδ,∀element a,b∈F,有δ(a+b)=δ(a)+δ(b)δ(a×b)=δ(a)×δ(b)称δ(x)是F,k上的同构映射,且F,k同构.
同构建立了两个域之间的联系,同构的域在某些性质上有相似的特征.
域的特征
定义
i
f
∃
a
,
使
得
∀
x
∈
F
,
有
a
x
=
0
则
称
域
F
的
特
征
为
a
,
记
作
c
h
a
r
{
F
}
=
a
.
如
果
不
存
在
,
则
特
征
为
0.
if\ \exists a,使得\forall x\in\mathbb{F},有ax=0\\ 则称域\mathbb{F}的特征为a,记作char\{\mathbb{F}\}=a.\\ 如果不存在,则特征为0.
if ∃a,使得∀x∈F,有ax=0则称域F的特征为a,记作char{F}=a.如果不存在,则特征为0.
注意:这里的
a
x
=
0
ax=0
ax=0是指a个x相加,不是
a
×
x
=
0
a\times x=0
a×x=0!!
性质
一
个
域
的
特
征
不
是
0
,
就
是
素
数
.
一个域的特征不是0,就是素数.
一个域的特征不是0,就是素数.
下面简单解释:
假设
a
=
c
h
a
r
{
F
}
a=char\{\mathbb{F}\}
a=char{F}不是素数
则对于其性质
a
m
=
0
am=0
am=0,
对于分解因式
a
=
i
×
j
a=i\times j
a=i×j,
有
(
i
×
j
)
m
=
0
(i\times j)m=0
(i×j)m=0.
又对于零元0,有性质
(
i
×
j
)
m
=
0
  
⟺
  
i
m
=
0
(i\times j)m=0\iff im=0
(i×j)m=0⟺im=0
所以
∃
i
o
r
j
≤
a
,
i
m
=
0
,
j
m
=
0
\exists i\ or\ j \leq a,im=0,jm=0
∃i or j≤a,im=0,jm=0
不成立.
所以特征不是0就是一个质数.
(
a
±
b
)
p
n
=
a
p
n
+
b
p
n
,
c
h
a
r
{
F
}
=
p
.
(a\pm b)^{p^n}=a^{p^n}+b^{p^n},char\{\mathbb{F}\}=p.
(a±b)pn=apn+bpn,char{F}=p.
这是有限域内的二项式定理.
对此简单的做一点解释:
由二项式定理,除去首位两项外其他的项都有:
C
p
n
i
=
(
p
n
)
!
i
!
⋅
(
p
n
−
i
)
!
C_{p^n}^i=\frac{(p^n)!}{i!\cdot (p^n-i)!}
Cpni=i!⋅(pn−i)!(pn)!
所以无论如何分子都会有一个
p
n
p^n
pn(除非i=0,就是首尾两项),则明显地
p
∣
C
p
n
i
p|C_{p^n}^i
p∣Cpni.
又中间项有a,b,由
p
a
=
0
,
p
b
=
0
pa=0,pb=0
pa=0,pb=0,
中间项消去.
注意,这里的中间项
C
p
n
i
a
i
b
p
n
−
i
C_{p^n}^i a^ib^{p^n-i}
Cpniaibpn−i,是和特征定义相同的几个a相加,而不是域内定义的乘法.
下一篇将研究域上的多项式.