一次同余式的求解和相关理论

定义

形如 f ( x ) ≡ 0 ( m o d m ) f(x)\equiv 0\pmod m f(x)0(modm)的方程称同余式. f ( x ) f(x) f(x)是整数系数多项式. f ( x ) f(x) f(x)是形如 a x + b ax+b ax+b的是一次同余式.

明显的,一个有解的同余式解是无限的,但是都在若干个对m的剩余系内.所以称满足条件的剩余系的个数为解数.
下面以解一个一次同余式的过程解释一次同余式的解法和相关性质.


例程

6 x ≡ 28 ( m o d 32 ) 6x \equiv 28\pmod{32} 6x28(mod32)

判断有无解

T h e o r e m : 同 余 式 a x ≡ b ( m o d m ) 有 解 的 充 要 条 件 是 ( a , m ) ∣ b . 在 有 解 的 情 况 下 , 解 数 为 g c d ( a , m ) . {Theorem:}\\ 同余式 ax\equiv b \pmod m有解的充要条件是( a,m )| b.\\在有解的情 况下,解数为gcd(a,m). Theorem:axb(modm)(a,m)b.gcd(a,m).
解释:
ax=km+b, ax-km=b,要有整数解x,k,则根据裴蜀定理,有且仅有sa+tb=gcd(a,b)*k有整数解.
AArmCQ.png
实际上就是裴蜀定理中用表格求解的那个gcd(a,b)=sa+tb.

该式gcd(6,32)=2|28,有解.并根据性质(互质两个同除,不互质三个同除)约简为
3 x ≡ 14 ( m o d 1 ) 6 3x\equiv 14\pmod 16 3x14(mod1)6

通解和解数

T h e o r e m : 如 果 有 解 , 且 求 出 特 解 x 0 , 那 么 通 解 为 x ≡ x 0 + t ⋅ m g c d ( a , m ) ( m o d m ) . {Theorem:}\\ 如果有解,且求出特解x_0,那么通解为x\equiv x_0+t\cdot \frac{m}{gcd(a,m)}\pmod m. Theorem:,x0,xx0+tgcd(a,m)m(modm).
解释:
由二元一次不定方程的平衡理论,当不定方程 b = a x + k m b=ax+km b=ax+km有特解 x 0 , k 0 x_0,k_0 x0,k0时,步进 △ p \triangle p p应为 [ a , m ] = a , m g c d ( a , m ) [a,m]=\frac{a,m}{gcd(a,m)} [a,m]=gcd(a,m)a,m此时 △ x = p / a , △ k = p / m . \triangle x=p/a,\triangle k=p/m. x=p/a,k=p/m.
所以 △ x \triangle x x应为步进的整数倍.即 x ≡ x 0 + t ⋅ m g c d ( a , m ) ( m o d m ) x\equiv x_0+t\cdot \frac{m}{gcd(a,m)}\pmod m xx0+tgcd(a,m)m(modm).
另外,由于余数应取mod m,即 x 0 + t ⋅ m g c d ( a , m ) &lt; m x_0+t\cdot \frac{m}{gcd(a,m)}&lt;m x0+tgcd(a,m)m<m
即要完成一个大小为m周期,步进数为gcd(a,m).所以解数为 g c d ( a , m ) gcd(a,m) gcd(a,m).
还有一种说法是对于解 x 0 + t ⋅ m g c d ( a , m ) x_0+t\cdot \frac{m}{gcd(a,m)} x0+tgcd(a,m)m在gcd(a,m)个解空间内分配,得解为
x 0 + t ⋅ m g c d ( a , m ) , t ∈ 0 , 1 , 2 , . . . , g c d ( a , m ) x_0+t\cdot \frac{m}{gcd(a,m)},t\in{0,1,2,...,gcd(a,m)} x0+tgcd(a,m)m,t0,1,2,...,gcd(a,m)

该式子中,特解为x=10 所以通解为 x ≡ 10 + 16 t ( m o d 3 ) 2 x\equiv 10+16t\pmod 32 x10+16t(mod3)2,解数为2,所以t=0,1

Summary

一次同余式求解较为简单,主要流程为:
判断有无解->解数->化简->特解->通解
在这些过程中,如果有大数,要灵活运用相关性质约简和求解.在此不赘述.

  • 7
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: c语言实现一次同余式求解可以使用欧几里得算法。欧几里得算法是一种解决整数同余方程的方法,它的通用公式是:ax ≡ 1 (mod m),其中 a 和 m 是已知的整数,x 是要求的整数解。 欧几里得算法可以使用扩展欧几里得算法实现。以下是一个示例实现: ``` #include <stdio.h> int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } int main() { int a, m, x, y; scanf("%d%d", &a, &m); int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { printf("No Solution\n"); } else { x = (x % m + m) % m; printf("%d\n", x); } return 0; } ``` 在这段代码中,函数 `exgcd` 实现了扩展欧几里得算法,并在主函数中使用。如果没有解,输出 "No Solution";否则输出满足条件的 x 值。 ### 回答2: 一次同余式(Linear congruence)是一种用于求解模线性方程的数学方法。在C语言中,我们可以使用循环和条件语句来实现一次同余式求解。 要实现一次同余式求解,需要解决以下问题:给定一个方程 ax ≡ b (mod m),找到x的所有解。 首先,我们需要判断这个方程是否有解。根据模线性方程的性质,方程ax ≡ b (mod m)有解的充分必要条件是gcd(a, m)能够整除b。因此,我们可以使用C语言中的“辗转相除法”计算gcd(a, m),并判断是否能够整除b。 如果方程有解,我们还需要计算出解的个数。由于模线性方程的解是周期性的,我们可以将方程转化为最简形式 ax ≡ c (mod m),其中c在0到m-1之间。因此,方程的解的个数是gcd(a, m)。 最后,我们需要计算出方程的一个特解。我们可以假定方程cx ≡ d (mod m) (0 <= c < m),其中d是任意满足gcd(a, m)能够整除ad的整数。然后,我们可以使用循环计算出满足方程的特解x。 综上所述,我们可以使用C语言编写程序来实现一次同余式求解。程序的逻辑如下: 1. 输入方程的参数a、b和m。 2. 判断方程是否有解,如果没有解则输出错误信息。 3. 计算方程的解的个数,并输出。 4. 计算方程的一个特解,并输出。 5. 根据方程的特解和解的个数,计算出所有的解,并输出。 通过以上步骤,我们可以使用C语言实现一次同余式求解。 ### 回答3: 同余式是一种在模运算中常用的数学公式,常用于生成伪随机数序列。一次同余式求解是指利用C语言编写程序解决一次同余式的问题。 一次同余式的数学表达式为 X(n+1) ≡ (a * X(n) + c) mod m,其中X(n)为当前的随机数,X(n+1)为下一个随机数,a为乘数,c为增量,m为模数。 要在C语言中实现一次同余式求解,可以按照下面的步骤进行操作: 1. 定义变量,包括当前随机数X(n)、下一个随机数X(n+1)、乘数a、增量c、模数m。 2. 初始化随机数X(n)的初始值,一般为一个随机初始种子数。 3. 利用公式计算下一个随机数X(n+1)的值:X(n+1) = (a * X(n) + c) % m。 4. 将下一个随机数X(n+1)赋值给当前随机数X(n)。 5. 重复步骤3和4,直到获得足够数量的随机数。 下面是一个简单的C语言程序实现一次同余式求解的示例: ```c #include <stdio.h> int main() { int Xn, Xn_plus_1, a, c, m; Xn = 1; // 设置初始值 a = 5; // 设置乘数 c = 2; // 设置增量 m = 9; // 设置模数 int count = 10; // 设置生成随机数的数量 for (int i = 0; i < count; i++) { Xn_plus_1 = (a * Xn + c) % m; printf("%d\n", Xn_plus_1); Xn = Xn_plus_1; } return 0; } ``` 以上程序可以生成10个满足一次同余式的随机数,并依次打印出来。具体的乘数、增量和模数可以根据具体需要进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值