1918
企业互联网数据中心数据
数据简介
算力是经济社会智能化转型的基石,其高效利用与优化部署能促进数据跨域流动,缓解算力供需矛盾并释放数据要素价值。智算中心通过赋予企业"即时响应能力"和"价值挖掘能力",帮助企业获取数据的即时价值与潜在价值,从而提升全要素生产率。研究表明,算力外置和数据向低成本地区流动集聚能进一步增强这一促进作用。
为验证这一机制,许诺等(2025)在《中国工业经济》上发表了相关研究。本团队基于国家工业和信息化部政务服务平台数据,通过Python爬虫技术获取了持有IDC许可证的企业名单,并结合上市公司关联信息进行标注。最终识别出10,287家IDC持证企业,其中包含573家上市公司。
时间跨度
截至2025-5-14
数据范围
拥有IDC的企业
数据格式
Excel形式
数据指标
相关研究
近年来,随着数字经济的快速发展,企业互联网数据相关研究逐渐成为学术界关注的重点。现有文献主要围绕算力部署与数据要素价值挖掘、数据跨域流动的经济效应以及智能化基础设施对企业绩效的影响等方向展开。本文对相关研究进行系统梳理,以期为未来研究提供参考。
1.算力部署与数据要素价值挖掘
算力作为人工智能时代的重要基础设施,其优化配置对释放数据要素价值具有关键作用。许诺等(2025)基于智算中心的微观证据,探讨了算力部署如何通过数据价值挖掘提升企业全要素生产率。研究发现,智算中心赋予企业“即时响应能力”和“价值挖掘能力”,使其能够更高效地捕获数据的即时价值和潜在价值,从而提高生产效率。此外,异地算力部署带来的数据跨域流动进一步强化了这一效应,表明算力外置与数据向低成本地区集聚能够优化资源配置效率。该研究不仅揭示了算力释放数据要素价值的内在机制,还指出迁出地能耗压力、迁入地基础设施完善度及区位条件是推动数据跨域流动的关键因素。
2.数据跨域流动的经济效应
数据跨域流动是数字经济时代资源优化配置的重要途径。相关研究表明,数据要素的跨区域流动能够降低企业运营成本,提高全要素生产率(许诺等,2025)。特别是当数据向要素获取成本较低的地区集聚时,企业能够更高效地利用算力资源,从而提升整体竞争力。这一发现为政府制定数据要素市场化配置政策提供了理论依据,同时也强调了完善数字基础设施(如电网、通信网络)对促进数据流动的重要性。
3.智能化基础设施对企业绩效的影响
智算中心等新型基础设施的建设对企业数字化转型具有深远影响。许诺等(2025)的实证分析表明,智算中心不仅提升了企业的数据处理能力,还通过优化算力布局增强了企业的创新效率和市场适应能力。这一研究补充了现有关于数字技术赋能企业发展的文献,并指出未来研究应进一步关注算力资源在不同行业和地区的差异化影响。
未来研究价值
1. 算力部署强度对企业碳绩效的影响机制
路径:智算中心覆盖率→数据要素配置效率→单位营收碳排放强度
设计:基于IDC许可证企业地理数据,构建空间杜宾模型分析算力基础设施的碳减排空间溢出效应。
2. 数据跨境流动对供应链韧性的双刃剑效应
路径:跨国数据流动量→供应链响应速度/网络攻击风险→供应链中断频率
设计:采用企业VPN日志数据匹配海关贸易数据,通过工具变量法解决内生性问题。
3. 绿色金融政策与企业数据治理能力的协同效应
路径:绿色信贷获取→ESG数据系统建设投入→环境违规事件减少
设计:以《绿色产业指导目录》修订为准自然实验,构建多期PSM-DID模型。
4. 数字化转型对数据要素市场定价效率的影响
路径:企业区块链技术应用→数据交易透明度→数据资产估值溢价
设计:基于数据交易所挂牌交易数据,构建Hedonic价格模型量化数字技术溢价。
5. 人工智能伦理治理与企业数据隐私保护的权衡
路径:AI伦理委员会设立→用户数据脱敏程度→商业数据价值折损率
设计:采用APP隐私政策文本分析与经营数据匹配,建立结构方程模型。
6. 可持续算力发展对区域数字经济差距的影响
路径:PUE能效指标改进→数据中心集聚度→数字服务业区位熵
设计:基于工信部能耗监测数据,构建空间收敛模型分析绿色算力的均衡效应。
7. 工业互联网平台数据共享对创新生态的影响
路径:平台数据开放接口数量→产业链协同专利数量→创新网络密度
设计:爬取工业互联网平台API数据,采用社会网络分析方法量化创新溢出。
8. 数据要素确权对企业数字化转型的约束效应
路径:数据资产入表进度→数字化投资波动率→全要素生产率增长
设计:基于新会计准则实施事件,构建三重差分模型检验制度变革影响。
9. 数字孪生技术应用与供应链碳足迹的可视化治理
路径:数字孪生系统覆盖率→供应链碳数据颗粒度→范围三排放削减量
设计:匹配企业IoT设备安装数据与碳核算报告,采用合成控制法评估。
10. 算力-电力协同优化对数字经济绿色发展的影响
路径:数据中心峰谷电价响应→可再生能源消纳率→数字经济增长质量
设计:基于电力交易中心数据与数字经济指数,构建向量自回归模型
参考文献
[1]许诺,毛聚,毛新述,等.算力部署、数据跨域流动与企业全要素生产率——来自智算中心的证据[J/OL].中国工业经济,2025,(04):61-79[2025-05-15].https://doi.org/10.19581/j.cnki.ciejournal.2025.04.003.
声明:本数据由数据皮皮侠团队整理,仅用于学术研究