题目链接
https://ac.nowcoder.com/acm/contest/11253/L
题目大意
有
n
(
n
≤
2
∗
1
0
5
)
n(n \leq 2*10^5)
n(n≤2∗105)个人,他们的好友关系可以用n个点
m
(
m
≤
2
∗
1
0
5
)
m(m \leq 2*10^5)
m(m≤2∗105)的图表示。
每个人会统计当天所走的微信步数,若一个人今天至少走了1步,且步数严格大于他的好友列表中其他人的步数,则他是“走路冠军”。
一天被分为q个时刻,求每个人是“走路冠军”的时间总和。每一时刻,会有一个人u新走了w步;
所有人今天走的步数总和均不会超过
1
0
4
10^4
104.
题解
这道题一开始的想法是保存两个人的关系,然后每次更改一个人的步数查看当前步数是否到达当前最大值,再遍历一遍他的好友,更新他们的榜单最大值,但考虑了一下如果它呈现“菊花”状。假使每次都更改花心,复杂度就是
O
(
q
∗
n
)
O(q*n)
O(q∗n),就是
1
0
12
10^{12}
1012,肯定会炸。
而较小的“朋友圈”复杂度就OK,所以可以采用分组的情况进行考虑,我们设一个值S,并使在“朋友圈”小于S时采用都遍历的算法,再大于等于S时采用新的算法,进行离线处理。
由于每人每日当日最多走
1
0
4
10^4
104的步数,所以我们可以开一个向量,储存朋友圈内第一时间走到该步数的时间。为防止找不到,覆盖整个向量。
计算思路如图:
由于步数不会减少【狗头】,所以它的函数图肯定是单调不下降的。设在
[
l
,
r
1
]
[l,r1]
[l,r1]时
I
I
I能拿到冠军,但他朋友圈内有一匹黑马在
r
0
r0
r0杀出,抢夺了冠军的位置,此时他拿冠军的时间就是
[
l
,
r
0
]
[l,r0]
[l,r0],甚至没有,
(
r
0
>
l
)
(r0>l)
(r0>l)。。。为了做一个恶人(划去),我们把
r
0
r0
r0设置的足够小且在范围内【狗头】。
此时计算时间和即可。
S是判断朋友圈是非大的条件,酌情即可(北大写了300,西南写了500,不如取个中间值400吧)。
(注:第一种可能时可以运用二分查找减少复杂度,可用lower_bound()来寻找严格最大值)
参考代码
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
int n,m,q;
int main()
{
scanf("%d %d %d",&n,&m,&q);
vector<vector<int> >g(n+1);
vector<vector<pair<int,int > > > v(n+1); //储存事件
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d %d",&x,&y);
g[x].push_back(y);
g[y].push_back(x);
}
for(int i=1;i<=q;i++)
{
int x,y;
scanf("%d %d",&x,&y);
v[x].push_back({y,i});
}
for(int i=1;i<=n;i++)
for(int j=1;j<v[i].size();j++)
v[i][j].first+=v[i][j-1].first; //统计当前步数总和
int magic=400;
for(int i=1;i<=n;i++)
{
int ans=0;
int s=v[i].size();
if(s<magic)
{
for(int j=0;j<v[i].size();j++)
{
int x=v[i][j].second; //时间
int y=v[i][j].first; //步数
int r=q;
if(j<v[i].size()-1)
r=v[i][j+1].second;
for(auto z:g[i])
{
auto it=lower_bound(v[z].begin(),v[z].end(),(pair<int , int>){y,0}) ; //严格递减
if(it != v[z].end())
r = min(r , (*it).second) ;
}
ans+=max(0,r-x);
}
}
else
{
vector<int> minn(10000 + 10 , q + 10);
for(auto t : g[i])
for(auto x : v[t])
minn[x.first] = min(minn[x.first] , x.second) ;
for(int o=9999;o>=1;o--)
minn[o]=min(minn[o],minn[o+1]);
for(int j=0;j<v[i].size();j++)
{
int x=v[i][j].second;
int y=v[i][j].first;
int r=q;
if(j<v[i].size()-1)
r=v[i][j+1].second;
r=min(r,minn[y]);
ans+=max(0,r-x);
}
}
cout<<ans<<"\n";
}
return 0;
}
总结
这道题要用分块的思维解决,分块是根据数据来分组的一种算法,能在有限的算法内求出最优解,值得去刷。