本AdaMIG (v1.2)来自CDISC官网以下链接:
https://www.cdisc.org/standards/foundational/adam/adam-implementation-guide-v1-2-release-package
由于篇幅限制,分上下。
4 Implementation Issues, Standard Solutions, and Examples
4 实施问题,标准解决方案和示例
The ADaM standard variables (columns) are described in Section 3, Standard ADaM Variables. However, there is more to ADaM than just using ADaM standard variables. The purpose of this section is to provide additional guidance on how to implement ADaM standard datasets correctly. Each example provided in this section illustrates one compliant solution to a common analysis issue.
第3节“ 标准ADaM变量” 中介绍了ADaM标准变量(列)。但是,ADaM不仅仅是使用ADaM标准变量。本部分的目的是提供有关如何正确实现ADaM标准数据集的其他指导。本节中提供的每个示例都说明了一个针对常见分析问题的兼容解决方案。
Section 4.1, Examples of Treatment Variables for Common Trial Designs, provides examples of treatment variables for common trial designs.
第4.1节“常见试验设计的治疗变量示例”提供了常见试验设计的治疗变量示例。
Sections 4.2-4.9 are concerned with the BDS. These sections provide standard solutions to BDS implementation issues, illustrated with examples. Section 4.2, Creation of Derived Columns Versus Creation of Derived Rows, focuses on assembling the rows and columns of the dataset. Sections 4.3, Inclusion of All Observed and Derived Records for a Parameter Versus the Subset of Records Used for Analysis, and 4.4, Inclusion of Input Data that Are Not Analyzed but that Support a Derivation in the ADaM Dataset, discuss issues around the inclusion/exclusion of rows not used in an analysis. Sections 4.5, Identification of Records Used for Analysis,
4.6, Identification of Population-Specific Analyzed Records, and 4.7, Identification of Records which Satisfy a Predefined Criterion for Analysis Purposes, discuss issues around identification of rows for analysis. Section 4.8, Examples of Timing Variables, contains an example of the use of the BDS variables for phase, period, and
subperiod. Section 4.9, Examples of Bi-Directional Lab Toxicity Variables, contains an example using bi-directional toxicity grading to support the creation of shift tables. Section 4.10, Other Issues to Consider, provides comment on additional issues that may arise.
4.2-4.9节与BDS有关。这些部分提供了有关BDS实施问题的标准解决方案,并带有示例。第4.2节“派生列的创建与派生行的创建”专注于组装数据集的行和列。第4.3节,包含参数的所有观测记录和派生记录与用于分析的记录子集有关;第4.4节,包含未分析但支持ADaM数据集派生的输入数据,讨论了有关包含/排除的问题分析中未使用的行数。第4.5节,用于分析的记录的标识,4.6,特定于人群的分析记录的标识,以及4.7,满足用于分析目的的预定标准的记录的标识,讨论了有关标识要分析的行的问题。第4.8节“时序变量示例”包含一个在相位,周期和相位上使用BDS变量的示例。次时期。第4.9节“双向实验室毒性变量示例”包含一个使用双向毒性分级支持创建移动表的示例。第4.10节“其他要考虑的问题”对可能出现的其他问题进行了评论。
For examples of the OCCDS, refer to the separate document "ADaM Structure for Occurrence Data" (available at https://www.cdisc.org/standards/foundational/adam).
Due to space considerations, the examples do not show complete datasets with all of the required and permissible variables. Rather, only those variables needed to illustrate the point being discussed are shown.
有关OCCDS的示例,请参阅单独的文档“事件数据的ADaM结构”(可从 https://www.cdisc.org/standards/foundational/adam获取)。
出于篇幅考虑,这些示例并未显示包含所有必需变量和允许变量的完整数据集。相反,仅显示了说明所讨论问题所需的那些变量。
4.1 Examples of Treatment Variables for Common Trial Designs
4.1 常见试验设计的治疗变量示例
Examples 1-4 in this section illustrate the concepts related to treatment variables in ADSL for several different trial designs, including a parallel design, two crossover designs, and a parallel design with an open-label extension. Note that only selected variables are illustrated; these examples are not intended to imply that these are the only variables in ADSL. Examples 5 and 6 illustrate concepts related to treatment variables in BDS.
本节中的示例1-4说明了与ADSL中用于多个不同试验设计的处理变量有关的概念,这些设计包括并行设计,两个交叉设计以及带有开放标签扩展名的并行设计。请注意,仅显示了选定的变量。这些示例并非旨在暗示这些是ADSL中唯一的变量。示例5和6说明了与BDS中的治疗变量有关的概念。
Example 1
In Table 4.1.1, the treatment variables for three subjects in a parallel design study (one treatment period) are illustrated. Note that the third subject was randomized to active treatment yet received placebo instead. TR01SDT and TR01EDT are not required variables in trial designs that do not involve multiple treatment periods.
在表4.1.1中,说明了平行设计研究(一个治疗期)中三名受试者的治疗变量。注意,第三位受试者被随机分配接受积极治疗,但改为接受安慰剂。在不涉及多个治疗期的试验设计中,TR01SDT和TR01EDT不是必需变量。
Table 4.1.1 Randomized Parallel Design – ADSL Dataset
表4.1.1随机平行设计– ADSL数据集
Row |
USUBJID |
ARM |
ACTARM |
TRT01P |
TRT01A |
TRTSDT |
TRTEDT |
1 |
1001 |
Drug X 5 mg |
Drug X 5 mg |
Drug X 5 mg |
Drug X 5 mg |
23OCT2007 |
17DEC2007 |
2 |
1002 |
Placebo |
Placebo |
Placebo |
Placebo |
19JUL2006 |
20SEP2007 |
3 |
1003 |
Drug X 5 mg |
Placebo |
Drug X 5 mg |
Placebo |
01NOV2007 |
20NOV2007 |
Example 2
Table 4.1.2 illustrates the treatment variables for three subjects in a two-period crossover design. It should be noted that TRTSDT and TRTEDT are not displayed, but TRTSDT=TR01SDT and TRTEDT is the maximum of TR01EDT and TR02EDT as some subjects may have discontinued before receiving TRT02P. Note that Subjects 1002 and 1003 (in Rows 2 and 3) were each exposed to placebo for both trial periods.
表4.1.2说明了在两个时期的交叉设计中三个对象的治疗变量。应该注意的是,未显示TRTSDT和TRTEDT,但是TRTSDT = TR01SDT和TRTEDT是TR01EDT和TR02EDT的最大值,因为某些对象在接受TRT02P之前可能已经中断。请注意,受试者1002和1003(在第2行和第3行中)均在两个试验期内均接受了安慰剂。
Table 4.1.2 Two-Period Crossover Design – ADSL Dataset
表4.1.2两周期交叉设计– ADSL数据集
Row |
USUBJID |
TRTSEQP |
TRT01P |
TRT02P |
TRTSEQA |
TRT01A |
TRT02A |
TR01SDT |
TR01EDT |
TR02SDT |
TR02EDT |
1 |
1001 |
Placebo – Drug X |
Placebo |
Drug X |
Placebo – Drug X |
Placebo |
Drug X |
15FEB2006 |
03MAY2006 |
10MAY2006 |
15AUG2006 |
2 |
1002 |
Placebo – Drug X |
Placebo |
Drug X |
Placebo – Placebo |
Placebo |
Placebo |
01MAR2006 |
12JUN2006 |
20JUN2006 |
23SEP2006 |
3 |
1003 |
Drug X – Placebo |
Drug X |
Placebo |
Placebo – Placebo |
Placebo |
Placebo |
03FEB2006 |
25APR2006 |
01MAY2006 |
04AUG2006 |
Example 3
Table 4.1.3 illustrates the treatment variables for three subjects in a three-period crossover design. It should be noted that TRTSDT and TRTEDT are not displayed, but TRTSDT=TR01SDT and TRTEDT is the maximum of TR01EDT, TR02EDT, and TR03EDT as some subjects may have discontinued before receiving TRT03P. In this trial, all subjects received the planned treatment at each period so the TRTxxA variables are not needed.
表4.1.3说明了三期交叉设计中三名受试者的治疗变量。应该注意的是,未显示TRTSDT和TRTEDT,但是TRTSDT = TR01SDT和TRTEDT是TR01EDT,TR02EDT和TR03EDT的最大值,因为某些对象在接受TRT03P之前可能已经中断。在该试验中,所有受试者均在每个时期接受了计划的治疗,因此不需要TRTxxA变量。
Table 4.1.3 Three-Period Crossover Design – ADSL Dataset
表4.1.3三周期交叉设计– ADSL数据集
Row |
USUBJID |
TRTSEQP |
TRT01P |
TRT02P |
TRT03P |
TR01SDT |
TR01EDT |
TR02SDT |
TR02EDT |
TR03SDT |
TR03EDT |
1 |
1001 |
Placebo – Drug X – Drug Y |
Placebo |
Drug X |
Drug Y |
15FEB2006 |
03MAY2006 |
10MAY2006 |
15AUG2006 |
23AUG2006 |
14NOV2006 |
2 |
1002 |
Drug Y – Placebo – Drug X |
Drug Y |
Placebo |
Drug X |
01MAR2006 |
12JUN2006 |
20JUN2006 |
23SEP2006 |
01OCT2006 |
05DEC2006 |
3 |
1003 |
Drug X – Drug Y – Placebo |
Drug X |
Drug Y |
Placebo |
03FEB2006 |
25APR2006 |
01MAY2006 |
04AUG2006 |
12AUG2006 |
15OCT2006 |
Example 4
Table 4.1.4 illustrates the treatment variables for two subjects from a double-blind, parallel design study with an open-label extension. The variable TRT01P was used for the planned treatment to which the subject was randomized in the double-blind portion, and TRT02P was used for the planned treatment in the open- label portion.
表4.1.4说明了来自双盲,平行设计研究(带有开放标签扩展名)的两名受试者的治疗变量。变量TRT01P用于计划的治疗,受试者在双盲部分中被随机分配,而TRT02P用于计划的治疗在开放标签部分。
Table 4.1.4 Parallel Design Study with an Open-label Extension – ADSL Dataset
表4.1.4具有开放标签扩展名的并行设计研究– ADSL数据集
Row |
USUBJID |
TRTSEQP |
TRT01P |
TRT02P |
TR01SDT |
TR01EDT |
TR02SDT |
TR02EDT |
1 |
1001 |
Drug X 5 mg - Drug X 5 mg |
Drug X 5 mg |
Drug X 5 mg |
14AUG2007 |
20SEP2007 |
21SEP2007 |
15MAR2008 |
2 |
1002 |
Placebo - Drug X 5 mg |
Placebo |
Drug X 5 mg |
05JUL2007 |
15AUG2007 |
17AUG2007 |
04FEB2008 |
Examples 5 and 6 build on the ADSL dataset illustrated in Table 4.1.4.
示例5和6建立在表4.1.4中所示的ADSL数据集上。
Example 5
As stated in Section 3.3.2, Record-Level Treatment and Dose Variables for BDS Datasets, at least one treatment variable is required in a BDS dataset. This requirement is satisfied by any of the subject-level or record-level treatment variables (e.g., TRTxxP, TRTP). The following two examples illustrate some possible approaches for BDS treatment variables. These examples are not meant to imply a standard or best practice; they are for illustration purposes only. Please refer to Section 3.3.2, Record-Level Treatment and Dose Variables for BDS Datasets, for important additional information.
如第3.3.2节“ BDS数据集的记录级处理和剂量变量”所述,BDS数据集中至少需要一个处理变量。任何受试者级别或记录级别的治疗变量(例如,TRTxxP,TRTP)都可以满足此要求。以下两个示例说明了BDS处理变量的一些可能方法。这些示例并不意味着暗示标准或最佳实践。它们仅用于说明目的。有关重要的附加信息,请参阅第3.3.2节“ BDS数据集的记录级处理和剂量变量”。
In Table 4.1.5, the ADSL treatment variables have been included in the BDS dataset. In addition, TRTP contains the planned treatment associated with the assessment (e.g., at ADT). The inclusion of both the ADSL treatment variables and TRTP allows this dataset to support multiple analysis strategies. If the data are analyzed using the randomized treatment from the double-blinded trial, then TRT01P can be used as the treatment variable in the analysis. If the data are analyzed using the treatment assigned at the time of the assessment, then TRTP can be used as the treatment variable in the analysis. In this example, TRTP is blank for assessments that are not on-treatment.
在表4.1.5中,ADSL处理变量已包含在 BDS数据集中。此外,TRTP包含与评估相关的计划治疗(例如,在ADT)。同时包含ADSL处理变量和TRTP允许该数据集支持多种分析策略。如果使用双盲试验中的随机治疗方法分析数据,则可以将TRT01P用作分析中的治疗变量。如果数据是使用评估时指定的治疗方法进行分析,然后将TRTP用作分析中的治疗变量。在此示例中,对于未进行评估的评估,TRTP为空白。
Table 4.1.5 Parallel Design Study with an Open-label Extension – BDS Dataset, Illustration 1
表4.1.5具有开放标签扩展名的并行设计研究– BDS数据集,图1
Row |
USUBJID |
APERIOD |
ADT |
TRTP |
TRT01P |
TRT02P |
1 |
1001 |
|
10AUG2007 |
|
Drug X 5 mg |
Drug X 5 mg |
2 |
1001 |
1 |
14AUG2007 |
Drug X 5 mg |
Drug X 5 mg |
Drug X 5 mg |
3 |
1001 |
2 |
21SEP2007 |
Drug X 5 mg |
Drug X 5 mg |
Drug X 5 mg |
4 |
1002 |
|
01JUL2007 |
|
Placebo |
Drug X 5 mg |
5 |
1002 |
1 |
05JUL2007 |
Placebo |
Placebo |
Drug X 5 mg |
6 |
1002 |
2 |
17AUG2007 |
Drug X 5 mg |
Placebo |
Drug X 5 mg |
Example 6
Table 4.1.6 demonstrates a different approach from the one illustrated in Example 5. In this approach, TRTP contains the treatment being used for the analysis of that record. Note that the assessments occurring prior to Period 1 have TRTP populated in order to support analysis of all records by planned treatment group, even though subjects had not yet been treated (see TR01SDT in Table 4.1.4).
表4.1.6演示了与示例5中所示方法不同的方法。在此方法中,TRTP包含用于分析该记录的处理。请注意,即使受试者尚未接受治疗,也要填充第1期之前进行的评估以支持计划治疗组对所有记录的分析(请参阅表4.1.4中的TR01SDT)。
Table 4.1.6 Parallel Design Study with an Open-label Extension – BDS Dataset, Illustration 2
表4.1.6 带有开放标签扩展名的平行设计研究– BDS数据集,图2
Row |
USUBJID |
APERIOD |
ADT |
TRTP |
1 |
1001 |
|
10AUG2007 |
Drug X 5 mg |
2 |
1001 |
1 |
14AUG2007 |
Drug X 5 mg |
3 |
1001 |
2 |
21SEP2007 |
Drug X 5 mg |
4 |
1002 |
|
01JUL2007 |
Placebo |
5 |
1002 |
1 |
05JUL2007 |
Placebo |
6 |
1002 |
2 |
17AUG2007 |
Drug X 5 mg |
4.2 Creation of Derived Columns Versus Creation of Derived Rows
4.2 派生列的创建与派生行的创建
This section provides specific rules to use in building a BDS dataset. These rules are essential, because they ensure the BDS dataset is analysis-focused, with all analysis-enabling variables and supportive variables included in a predictable structure, while preventing a "horizontalization" of the dataset.
本节提供了用于构建BDS数据集的特定规则。这些规则至关重要,因为它们确保BDS数据集以分析为重点,所有可启用分析的变量和支持变量都包含在可预测的结构中,同时防止数据集的“水平化”。
The rows (i.e., records) in the ADaM BDS represent subject data for analysis parameters and timepoints (as applicable). There may be multiple rows within a given combination of subject, parameter, and timepoint, depending on the number of observations collected or derived, baseline definition, etc.
ADaM BDS中的行(即记录)代表分析参数和时间点(如适用)的主题数据。给定的主题,参数和时间点组合中可能有多行,具体取决于收集或导出的观察数,基线定义等。
The ADaM BDS structure contains a central set of columns (i.e., variables) that represent the data being analyzed. These variables include the value being analyzed (e.g., AVAL) and the description of the value being analyzed (e.g., PARAM). Other columns in the dataset provide more information about the value being analyzed (e.g., the subject identification) or describe and trace its derivation (e.g., DTYPE) or support its analysis (e.g., treatment variables, covariates). Standard columns exist for a variety of purposes, such as SDTM record identifiers for traceability, population and other record selection flags, analysis values, and some standard functions of analysis values.
Permissible columns are not limited to those whose variable names are specified in Section 3, Standard ADaM Variables, and may include study-specific analysis model covariates, subgrouping variables, variables supportive of traceability, and other variables needed for analysis or useful for review.
ADaM BDS结构包含一组代表要分析的数据的中央列(即变量)。这些变量包括要分析的值(例如AVAL)和要分析的值的描述(例如PARAM)。数据集中的其他列提供有关正在分析的值(例如,受试者标识)的更多信息,或者描述和跟踪其推导(例如,DTYPE),或支持其分析(例如,治疗变量,协变量)。标准列存在多种用途,例如用于可追溯性的SDTM记录标识符,填充和其他记录选择标记,分析值以及分析值的某些标准功能。允许的列不限于其变量名称在第3节“标准ADaM 变量” 中指定的列,并且可以包括特定于研究的分析模型协变量,分组变量,支持可追溯性的变量以及其他分析所需或对审核有用的变量。
The BDS is flexible in that derived data can be added to the collected data as additional rows and columns that support the analyses and provide traceability. However, there are some constraints on how to incorporate derived data in the BDS dataset. Specifically, the subject of this section is to address when derived data that are functions of analysis values should be added as additional columns, and when they should be added as additional rows instead.
BDS的灵活性在于,可以将派生数据作为支持分析并提供可追溯性的其他行和列添加到收集的数据中。但是,在如何将派生数据合并到BDS数据集中存在一些限制。具体而言,本节的主题是要解决何时应将作为分析值函数的派生数据添加为附加列,以及何时应将其作为附加行添加。
The precise sequence of steps involved in creating a BDS ADaM dataset varies according to operational and study- specific needs. For the purposes of this discussion, it is useful to consider two fundamental steps.
创建BDS ADaM数据集所涉及的步骤的确切顺序会根据操作和研究的特定需求而变化。为了便于讨论,考虑两个基本步骤是很有用的。
- Create an initial dataset from the source datasets. The first step is to create a set of rows and columns more or less directly derived from or loaded from input datasets (primarily SDTM datasets and other ADaM datasets) into their appropriate places. This step will include creation and population of columns containing analysis parameter (PARAM), analysis timepoint (e.g., AVISIT) and analysis values (e.g., AVAL, AVALC). It would also include adding columns containing identifiers (e.g., STUDYID, USUBJID, SUBJID, SITEID) and other SDTM variables for traceability (e.g., VISIT, --SEQ).
- 从源数据集创建初始数据集。第一步是创建一组行或列,它们或多或少直接从输入数据集(主要是SDTM数据集和其他ADaM数据集)派生或加载到它们的适当位置。此步骤将包括创建和填充包含分析参数(PARAM),分析时间点(例如AVISIT)和分析值(例如AVAL,AVALC)的列。它还将包括添加包含标识符(例如,StudyID,USUBJID,SUBJID,SITEID)和其他可追溯性的SDTM变量(例如,VISIT,-SEQ)的列。
- Add additional derived data as needed for the analysis. The second step consists of adding derived rows and columns based on the initial set of ADaM dataset records and columns. The rules below govern this step. These rules are further described and illustrated in the remaining subsections of this section.
- 根据分析需要添加其他派生数据。第二步包括根据ADaM数据集记录和列的初始集合添加派生的行和列。以下规则支配了此步骤。这些规则将在本节的其余小节中进一步描述和说明。
Rule 1: A parameter-invariant function of AVAL and BASE on the same row that does not involve a transform of BASE should be added as a new column.
规则1:应在不涉及BASE转换的同一行上添加AVAL和BASE的参数不变函数作为新列。
Rule 2: A transformation of AVAL that does not meet the conditions of Rule 1 should be added as a new parameter, and AVAL should contain the transformed value.
规则2:应添加不符合规则1条件的AVAL转换作为新参数,并且AVAL应该包含转换后的值。
Rule 3: A function of one or more rows within the same parameter for the purpose of creating an analysis timepoint should be added as a new row for the same parameter.
规则3:为了创建分析时间点,应将同一参数中一个或多个行的功能添加为同一参数的新行。
Rule 4: A function of multiple rows within a parameter should be added as a new parameter.
规则4:应将参数中具有多个行的功能添加为新参数。
Rule 5: A function of more than one parameter should be added as a new parameter.
规则5:应将一个以上参数的功能添加为新参数。
Rule 6: When there is more than one definition of baseline, each additional definition of baseline requires the creation of its own set of rows.
规则6:当存在多个基准定义时,每个附加的基准定义都需要创建自己的一组行。
It is important to understand that the rules outlined here are specific to rows and columns that are created based on data already present in the ADaM dataset. The rules do not apply to data that are copied or derived directly from other datasets (either SDTM or ADaM, or both). For example, how to include a transformation of AVAL within the same dataset is governed by the rules, but the inclusion of a covariate derived from another dataset (e.g., inclusion of a variable from ADSL) is not governed by these rules.
重要的是要了解,此处概述的规则特定于基于ADaM数据集中已经存在的数据创建的行和列。该规则不适用于直接从其他数据集(SDTM或ADaM或两者)复制或派生的数据。例如,如何在同一数据集中包含AVAL的转换受规则支配,但是从另一数据集派生的协变量的包含(例如,包含来自ADSL的变量)不受这些规则支配。
4.2.1 Rules for the Creation of Rows and Columns
4.2.1 创建行和列的规则
To preserve the BDS, it is necessary to place constraints on when one is allowed to create derived columns. Rule 1 describes when derived data belongs in columns. Rules 2-6 describe situations in which one should derive data in new rows, whether as entirely new parameters or as additional rows in existing parameters. In the subsections and examples that follow, there is some text that is in bold. The use of the bold font is to emphasize to the reader the importance of the concept or example that is being discussed.
为了保留BDS,必须对何时允许创建派生列设置约束。规则1说明了派生数据何时属于列。规则2-6描述了应该在新行中导出数据的情况,无论这些数据是全新的参数还是现有参数中的其他行。在随后的小节和示例中,一些文本以粗体显示。粗体字体的使用是要向读者强调所讨论的概念或示例的重要性。
4.2.1.1 Rule 1: A parameter-invariant function of AVAL and BASE on the same row
that does not involve a transform of BASE should be added as a new column.
4.2.1.1 规则1:在同一行中添加一个不涉及BASE变换的AVAL和BASE的参数不变函数作为新列。
The three conditions of Rule 1 for when a function of AVAL and BASE should be added as a column (i.e., a function column) are:
规则1的三个条件,何时将AVAL和BASE函数添加为列(即,函数列):
1.the function is of AVAL and, optionally, BASE, on the same row; and
1.该函数在同一行中具有AVAL,并且可选地具有BASE;和
2.the function is parameter-invariant; and
2.该函数是参数不变的;和
3.the function does not involve a transform of BASE.
3.该函数不涉及BASE的转换。
The remainder of the discussion of this rule is devoted to explaining these conditions.
关于该规则的其余讨论专门用于解释这些条件。
PARAM uniquely describes the contents of AVAL or AVALC. Often, AVAL itself is not the value that is needed for analysis.
PARAM唯一描述AVAL或AVALC的内容。通常,AVAL本身不是分析所需的值。
For example, in a change from baseline analysis, it is the change from baseline CHG that is analyzed. The change from baseline column CHG should be created according to Rule 1 because it satisfies the three conditions:
例如,在基线分析的变化中,分析的是基线CHG的变化。从基线列CHG的更改应根据规则1创建,因为它满足以下三个条件:
- CHG is derived from AVAL and BASE on the same row.
1.CHG源自同一行上的AVAL和BASE。
- The same calculation applies on all rows in the dataset on which CHG is populated (the function CHG=AVAL-BASE does not vary according to PARAM). This second condition is known as the property of parameter-invariance; unless listed in Section 3, Standard ADaM Variables, a function of AVAL (and optionally BASE) may not be derived as a column if it is parameter-variant (i.e., is calculated differently for different parameters).
2.相同的计算适用于在其中填充CHG的数据集中的所有行(函数CHG = AVAL-BASE不会根据PARAM改变)。第二个条件称为参数不变性。除非在第3节中列出,标准ADAM变量,AVAL的函数(和如果它是参数变量(即,对于不同参数的计算方式不同),则可能无法将BASE导出为列。
3. In the function CHG=AVAL-BASE, BASE is not transformed.
3.在函数CHG = AVAL-BASE中,BASE不转换。
Table 4.2.1.1.1 illustrates the CHG column. Note that the producer elected not to populate CHG on the screening or run-in rows, as they are pre-baseline. The baseline flag column ABLFL identifies the row that was used to populate the BASE column.
表4.2.1.1.1说明了CHG列。请注意,生产者选择不填充CHG在筛选或磨合行中,因为它们是基线之前的值。基线标志列ABLFL标识用于填充BASE列的行。
Table 4.2.1.1.1 Illustration of Rule 1: Creation of a Column Containing a Same-Row Parameter-Invariant Function of AVAL and BASE
表4.2.1.1.1规则1的说明:创建包含AVAL和BASE的相同行参数不变函数的列
Row |
PARAM |
PARAMCD |
AVISIT |
ABLFL |
AVAL |
BASE |
CHG |
1 |
Weight (kg) |
WEIGHT |
Screening |
|
99 |
100 |
. |
2 |
Weight (kg) |
WEIGHT |
Run-In |
|
101 |
100 |
. |
3 |
Weight (kg) |
WEIGHT |
Baseline |
Y |
100 |
100 |
0 |
4 |
Weight (kg) |
WEIGHT |
Week 24 |
|
94 |
100 |
-6 |
5 |
Weight (kg) |
WEIGHT |
Week 48 |
|
92 |
100 |
-8 |
6 |
Weight (kg) |
WEIGHT |
Week 52 |
|
95 |
100 |
-5 |
7 |
Pulse Rate (bpm) |
PULSE |
Screening |
|
63 |
62 |
. |
8 |
Pulse Rate (bpm) |
PULSE |
Run-In |
|
67 |
62 |
. |
9 |
Pulse Rate (bpm) |
PULSE |
Baseline |
Y |
62 |
62 |
0 |
10 |
Pulse Rate (bpm) |
PULSE |
Week 24 |
|
66 |
62 |
4 |
11 |
Pulse Rate (bpm) |
PULSE |
Week 48 |
|
70 |
62 |
8 |
12 |
Pulse Rate (bpm) |
PULSE |
Week 52 |
|
64 |
62 |
2 |
In contrast, consider the potential function column LOG10 = Log10(AVAL). This function satisfies all three conditions of Rule 1 and as such is allowed as a function column. However, LOG10BAS = Log10(BASE) and LOG10CHG = Log10(AVAL) – Log10(BASE) are not allowable columns as they involve a transform of BASE.
相反,考虑潜在功能列LOG10 = Log10(AVAL)。该函数满足规则1的所有三个条件,因此可以作为函数列使用。但是,不允许使用LOG10BAS = Log10(BASE)和LOG10CHG = Log10(AVAL)– Log10(BASE)列,因为它们涉及BASE的转换。
Therefore, if it is desired to perform change from baseline analysis in LOG10, columns for LOG10, baseline of LOG10 and change from baseline of LOG10 would be needed for analysis and review, then the Log10 transformation should instead be created as a new parameter, so that the usual columns AVAL, BASE, and CHG can be used. This is because columns for baseline of LOG10 and change from baseline of LOG10 would not satisfy the conditions of Rule 1. Baseline of LOG10 violates the first condition, because it is not generally a function of AVAL on the same row (does not generally vary by AVAL), and instead is a function only of AVAL on the baseline row. "Change from baseline of LOG10" = LOG10(AVAL) - LOG10(BASE) violates the third condition, because it contains the Log10 transform of BASE.
因此,如果需要对LOG10中的基线分析进行更改,则需要对LOG10的列,LOG10的基线以及对LOG10的基线进行更改以进行分析和检查,则应将Log10转换创建为新参数,因此可以使用常规列AVAL,BASE和CHG。这是因为用于LOG10基线和从LOG10基线变化的列将不满足规则1的条件。LOG10基线违反了第一个条件,因为它通常不是同一行上AVAL的函数(通常不会因AVAL),而仅是基线行上AVAL的函数。“从LOG10的基线更改” = LOG10(AVAL)-LOG10(BASE)违反了第三个条件,因为它包含BASE的Log10转换。
The intent is to use the standard columns as much as possible, to keep the structure as standard as possible, and avoid undue "horizontalization," while still permitting efficient use of function columns.
目的是尽可能使用标准列,以使结构尽可能保持标准,并避免过度的“水平化”,同时仍允许有效使用功能列。
Any function that satisfies the three conditions of Rule 1 is allowed as a column. If the function is listed in Section 3, Standard ADaM Variables, then the ADaM standard column name must be used just as CHG is used in Table 4.2.1.1.1.
满足规则1的三个条件的任何函数都可以作为一列。如果在第3节“标准ADaM变量”中列出了该函数,则必须使用ADaM标准列名,就像表4.2.1.1.1中使用CHG一样。
4.2.1.2 Rule 2: A transformation of AVAL that does not meet the conditions of Rule 1 should be added as a new parameter, and AVAL should contain the transformed value.
4.2.1.2 规则2:应添加不符合规则1条件的AVAL转换作为新参数,并且AVAL应包含转化值。
If the intention is to redefine AVAL, BASE, CHG, etc. in terms of a transform of AVAL, then a new parameter must be added in which PARAM describes the transform. The creation of a new parameter results, by definition, in the creation of a new set of rows.
如果要根据AVAL的转换重新定义AVAL,BASE,CHG等,则必须添加一个新参数,其中PARAM描述了转换。根据定义,创建新参数将导致创建一组新的行。
For example, as described in the discussion of Rule 1, in a change from baseline analysis of the logarithm of weight, AVAL should contain the log of weight, BASE should contain the baseline value of the log of weight, and CHG should contain the difference between the two. PARAM should contain a description of the transformed data contained in AVAL, e.g., "Log10 (Weight (kg))". In this way the ADaM standard accommodates an analysis of transformed data in the standard columns without creating a multiplicity of new special-purpose columns.
例如,如对规则1的讨论中所述,在对重量的对数进行基线分析的更改中,AVAL应该包含重量的对数,BASE应该包含重量的对数的基线值,CHG应该包含差值两者之间。PARAM应包含对AVAL中包含的转换数据的描述,例如“ Log10(重量(kg))”。这样,ADaM标准就可以在标准列中分析转换后的数据,而无需创建多个新的专用列。
In Table 4.2.1.2.1, the producer has chosen values of AVISITN that correspond to week number and which serve well for sorting and for plotting. VISITNUM is the SDTM visit number.
在表4.2.1.2.1中,生产者选择了与周数相对应的AVISITN值,这些值可以很好地用于排序和绘图。VISITNUM是SDTM访问号码。
Note that when source SDTM dataset variables, such as USUBJID, SUBJID, SITEID, VISIT, VISITNUM and --SEQ, are included in an ADaM dataset with their original SDTM variable names, their values must not be altered in any way.
请注意,当原始SDTM数据集变量(例如USUBJID,SUBJID,SITEID,VISIT,VISITNUM和--SEQ)以原始SDTM变量名称包含在ADaM数据集中时,不得以任何方式更改其值。
Table 4.2.1.2.1 Illustration of Rule 2: Creation of a New Parameter to Handle a Transformation
表4.2.1.2.1规则2的插图:创建用于处理转换的新参数
Row |
PARAM |
PARAMCD |
VISIT |
AVISIT |
AVISITN |
VISITNUM |
ABLFL |
AVAL |
BASE |
CHG |
1 |
Weight (kg) |
WEIGHT |
Visit -1 |
Screening |
-4 |
1 |
|
99 |
100 |
. |
2 |
Weight (kg) |
WEIGHT |
Visit 0 |
Run-In |
-2 |
2 |
|
101 |
100 |
. |
3 |
Weight (kg) |
WEIGHT |
Visit 1 |
Baseline |
0 |
3 |
Y |
100 |
100 |
0 |
4 |
Weight (kg) |
WEIGHT |
Visit 12 |
Week 24 |
24 |
4 |
|
94 |
100 |
-6 |
5 |
Weight (kg) |
WEIGHT |
Visit 24 |
Week 48 |
48 |
5 |
|
92 |
100 |
-8 |
6 |
Weight (kg) |
WEIGHT |
Visit 26 |
Week 52 |
52 |
6 |
|
95 |
100 |
-5 |
7 |
Log10(Weight (kg)) |
L10WT |
Visit -1 |
Screening |
-4 |
1 |
|
1.9956 |
2 |
. |
8 |
Log10(Weight (kg)) |
L10WT |
Visit 0 |
Run-In |
-2 |
2 |
|
2.0043 |
2 |
. |
9 |
Log10(Weight (kg)) |
L10WT |
Visit 1 |
Baseline |
0 |
3 |
Y |
2 |
2 |
0 |
10 |
Log10(Weight (kg)) |
L10WT |
Visit 12 |
Week 24 |
24 |
4 |
|
1.9731 |
2 |
-0.0269 |
11 |
Log10(Weight (kg)) |
L10WT |
Visit 24 |
Week 48 |
48 |
5 |
|
1.9638 |
2 |
-0.0362 |
12 |
Log10(Weight (kg)) |
L10WT |
Visit 26 |
Week 52 |
52 |
6 |
|
1.9777 |
2 |
-0.0223 |
A related application of Rule 2 is in the case where it is necessary to support analysis and reporting in two different systems of units. In SDTM Findings domains such as LB, QS, EG, and so on, the --STRESN column is the only numeric result column, and is also the only standardized numeric result column. The --ORRES column contains a character representation of the collected result, in the collected units specified in the --ORRESU column. The --ORRES column is not standardized. So for example, if data are typically collected in conventional units, SDTM cannot accommodate standardized data in both conventional units and the International System of Units (SI). In SDTM, for any given --TEST, a producer can standardize in one system of units but not two. If one wishes to be able to analyze standardized results in both conventional units and in SI units, a transform in an ADaM dataset is needed. In each such case, a new parameter must be created in order to accommodate standardized data in the other system of units.
如果需要在两个不同的单位系统中支持分析和报告,则规则2的相关适用。在LB,QS,EG等