Python 中的递归,你真的懂了吗?

什么是递归?

递归,就是函数在运行的过程中调用自己。

代码示例:

def recursion(n):
 
    print(n)
    recursion(n+1)
 
recursion(1)

出现的效果就是,这个函数在不断的调用自己,每次调用就n+1,相当于循环了。
在这里插入图片描述
可是为何执行了900多次就出错了呢?还说超过了最大递归深度限制,为什么要限制呢?

  • 通俗来讲: 是因为每个函数在调用自己的时候还没有退出,占内存,多了肯定会导致内存崩溃。

  • 本质上讲: 在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。
    在这里插入图片描述


递归的特点

让我们通过现象来看本质, 下面是是用递归写的,让10不断除以2,直到0为止。
在这里插入图片描述
为何结果先打印了10、5、2、1,然后又打印了1、2、5、10呢?打印10、5、2、1你可以理解,因为函数在一层层的调用自己嘛,但1、2、5、10是什么逻辑呢? 因为当前函数在执行过程中又调用了自己一次,当前这次函数还没结束,程序就又进了入第2层的函数调用,第2层没结束就又进入了第3层,只到n/2 > 0不成立时才停下来, 此时问你,程序现在直接结束么?no,no,no, 现在递归已经走到了最里层,最里层的函数不需要继续递归了,会执行下面2句
在这里插入图片描述
打印的是1, 然后最里层的函数就结束了,结束后会返回到之前调用它的位置。即上一层,上一层打印的是2,再就是5,再就是10,即最外层函数,然后结束,总结,这个递归就是一层层进去,还要一层层出来。
在这里插入图片描述
通过上面的例子,我们可以总结递归几个特点:

  • 必须有一个明确的结束条件,要不就会变成死循环了,最终撑爆系统
  • 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
  • 递归执行效率不高,递归层次过多会导致栈溢出

递归有什么用呢?

可以用于解决很多算法问题,把复杂的问题分成一个个小问题,一一解决。

比如求斐波那契数列、汉诺塔、多级评论树、二分查找、求阶乘等。用递归求斐波那契数列、汉诺塔 对初学者来讲可能理解起来不太容易,所以我们用阶乘和二分查找来给大家演示一下。

求阶乘:
  • 任何大于1的自然数n阶乘表示方法:

    n!=1×2×3×……×n

    n!=n×(n-1)!
    即举例:4! = 4x3x2x1 = 24

  • 递归代码示例:

    def factorial(n):
     
        if n == 0: #是0的时候,就运算完了
            return 1
        return n * factorial(n-1) # 每次递归相乘,n值都较之前小1
     
     
    d = factorial(4)
    print(d)
    
二分查找:

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,
如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,
如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

  • 原理:

在一个已排序的数组data_set中,使用二分查找n,假如这个数组的范围是[low…high],我们要的n就在这个范围里。查找的方法是拿low到high的正中间的值,我们假设是mid,来跟n相比,如果mid>n,说明我们要查找的n在前数组data_set的前半部,否则就在后半部。无论是在前半部还是后半部,将那部分再次折半查找,重复这个过程,知道查找到n值所在的地方。

  • 二分查找代码示例:
#data_set = [1,3,4,6,7,8,9,10,11,13,14,16,18,19,21]
data_set = list(range(101))
 
 
def b_search(n,low,high,d):
 
    mid = int((low+high)/2) # 找到列表中间的值
    if low == high:
        print("not find")
        return
    if d[mid] > n: # 列表中间值>n, 代数要找的数据在左边
        print("go left:",low,high,d[mid])
        b_search(n,low,mid,d) # 去左边找
    elif d[mid] < n: # 代数要找的数据在左边
        print("go right:",low,high,d[mid])
        b_search(n,mid+1,high,d) # 去右边找
    else:
        print("find it ", d[mid])
 
 
b_search(188, 0,len(data_set),data_set)

那需要找多少次呢?

go right: 0 101 50
go right: 51 101 76
go right: 77 101 89
go right: 90 101 95
go right: 96 101 98
go right: 99 101 100
not find

最多将会操作7次,其实因为每一次我们都抛掉当前确定的区间的一半的区间作为不可能解部分,那么相当于求最多操作次数,就是在区间内,最多将有多少个一半可以抛去、那么就是将100一直除以2,直到不能除为止。

那么这个运算过程,其实就是相当于求了一个log2(100)≈7。


尾递归:

如果一个函数中所有递归形式的调用都出现在函数的末尾,我们称这个递归函数是尾递归的。当递归调用是整个函数体中最后执行的语句且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归。尾递归函数的特点是在回归过程中不用做任何操作,这个特性很重要,因为大多数现代的编译器会利用这种特点自动生成优化的代码。

当编译器检测到一个函数调用是尾递归的时候,它就覆盖当前的活动记录而不是在栈中去创建一个新的。编译器可以做到这点,因为递归调用是当前活跃期内最后一条待执行的语句,于是当这个调用返回时栈帧中并没有其他事情可做,因此也就没有保存栈帧的必要了。通过覆盖当前的栈帧而不是在其之上重新添加一个,这样所使用的栈空间就大大缩减了,这使得实际的运行效率会变得更高。

  • 尾递归代码示例:
def calc(n):
    print(n - 1)
    if n > -50:
        return calc(n-1)
  • 我们之前求的阶乘是尾递归么?很显然不是,下面会进行说明
def factorial(n):
 
    if n == 0: #是0的时候,就运算完了
        return 1
    return n * factorial(n-1) # 每次递归相乘,n值都较之前小1
 
 
d = factorial(4)
print(d)

上面的这种递归计算最终的return操作是乘法操作。所以不是尾递归。因为每个活跃期的返回值都依赖于用n乘以下一个活跃期的返回值,因此每次调用产生的栈帧将不得不保存在栈上直到下一个子调用的返回值确定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值