CVPR 2024 | Rethinking Interactive Image Segmentationwith Low Latency, High Quality, and Diverse Pro

研究人员提出SegNext方法,通过密集视觉提示和文本编码,实现低延迟的交互式图像分割,支持多种提示,如点击、框等,且在保持高质量的同时,对比现有专家模型有显著优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR 2024 - Rethinking Interactive Image Segmentationwith Low Latency, High Quality, and Diverse Prompts

在这里插入图片描述

这篇文章主要研究了如何在保持低延迟的同时提高交互式图像分割的质量,并实现多种提示的兼容性。

在这里插入图片描述

研究人员提出了一种名为 SegNext 的方法,它重新引入了专家模型中常用的密集视觉提示的表示和融合方式,以促进高质量的分割。该方法将五种不同的视觉提示(包括点击、框、涂鸦、多边形和遮罩)统一在一个密集图上。

所提方法也支持文本提示,即使用 CLIP 来将文本提示编码成向量,并通过交叉注意力块将其与图像嵌入融合。尽管文本提示的性能可能具有很大的提升空间,但是配合视觉提示仍然展现出了具有希望的表现。

实验结果显示,密集表示和融合视觉提示是实现高质量分割的关键设计选择。与现有的专家模型相比,该方法能够在保持低延迟的同时实现更好的分割效果。

交互式图像分割是一个长期存在的计算机视觉任务,旨在精确地划分特定的图像区域。然而,现有的专家模型和通用模型在实现低延迟、高质量的交互式分割以及支持多种提示方面存在困难。现有方法无法实现低延时高性能的原因主要有以下几点:

  • 现有方法通常只支持有限的提示,如点击或简单的文本描述,缺乏多样性,这限制了模型的泛化能力。
  • 许多方法采用联合编码的方式处理图像和提示,导致计算复杂度高,延迟较大。
  • 在处理图像分割任务时,现有方法往往需要对整个图像进行重新计算,每次更新提示都需要重新计算,这也增加了延迟。

相比之下,本文提出的方法通过引入密集的视觉提示和优化模型结构,实现了低延时和高性能的图像分割效果。

与 SAM 这类专家模型的关键差异主要在于表征视觉提示的方式不同。本文采用密集表征来保留空间信息。这样的密集设计导致了高质量的分割效果。

### CVPR 2024 会议基本信息 CVPR(IEEE/CVF Computer Vision and Pattern Recognition Conference)作为计算机视觉和模式识别领域的顶级学术会议之一,其重要性和影响力毋庸置疑。以下是关于CVPR 2024的具体信息: #### 会议时间与地点 CVPR 2024 的会议时间为 **2024年6月17日至6月21日**,会议将在美国华盛顿州西雅图举行[^2]。 #### 论文提交情况 根据官方数据,CVPR 2024 收到了 **11532篇有效论文提交**,其中共有 **2719篇论文被接收**,整体接收率为约 **23.6%**。这一数据反映了该会议的竞争激烈程度以及高质量的研究成果集中度[^2]。 --- ### 投稿要求概述 虽然具体的投稿指南可能需要查阅官方文档,但通常情况下,CVPR 对于论文的要求如下: 1. **格式规范**: 提交的论文需遵循 IEEE 格式的模板,并且匿名处理以支持双盲评审机制。 2. **长度限制**: 正文部分一般不得超过8页,不包括参考文献和附录。 3. **主题范围**: 需要围绕计算机视觉的核心领域展开,例如图像理解、视频分析、深度学习模型优化等。 4. **补充材料**: 可以为论文提供额外的技术报告或实验代码链接来增强可信度。 更多细节可以访问官网或者通过 OpenReview 平台获取更多信息[^1]。 --- ### 最新研究方向概览 基于当前趋势及过往数据分析,以下是一些预计会在 CVPR 2024 中成为热点的主题[^3]: - **多模态学习 (Multimodal Learning)** 结合文本、音频、图像等多种形式的数据进行联合建模,在生成式AI浪潮下备受关注。 - **大模型高效化 (Efficient Large Models)** 探讨如何降低大规模预训练模型计算成本的同时保持性能优势[^2]。 - **自监督与半监督方法(Self-Supervised & Semi-Supervised Methods)** 减少标注依赖的方法持续受到重视,特别是在资源受限场景下的应用价值显著提升。 - **实时推理技术(Real-Time Inference Techniques)** 特别是在边缘设备上的快速部署方案显得尤为重要。 此外,“Awesome-CVPR-2024”项目汇总了一系列精选论文列表、研讨会详情以及其他相关内容,可供进一步深入探讨[^3]。 ```python import requests from bs4 import BeautifulSoup def fetch_cvpr_papers(url="https://gitcode.com/gh_mirrors/aw/awesome-cvpr-2024"): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') papers_links = [] for link in soup.find_all('a'): href = link.get('href') if "/paper/" in str(href): # Assuming paper links contain '/paper/' papers_links.append(f"https://gitcode.com{href}") return papers_links[:5] papers = fetch_cvpr_papers() print(papers) ``` 上述脚本可以帮助抓取来自 Awesome-CVPR-2024 项目的前五篇文章链接供初步浏览。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值