【技巧总结】——二分

本文探讨了二分算法在求解可行性问题中的重要性,通过实例介绍了如何结合其他算法(如DP、最短路)使用二分。讲解了二分法解决最长递增子序列(LIS)问题,将时间复杂度降低到nlogn,并分享了利用单调性将枚举转换为二分查找的优化策略。
摘要由CSDN通过智能技术生成

求解性→可行性

这个思想非常重要,二分学好了确实可以和很多别的算法巧妙结合。
主要步骤就是二分答案,接着判断能否实现
经典例题:
魔法(二分+dp)

T e l e p h o n e L i n e s Telephone Lines TelephoneLines(二分+最短路)
本题又延伸出来一个新的知识点:判断的时候,可以选取适当的参考,用0,1,-1代替原数(毕竟不考虑求值),这样就可以用最后求出来的结果 O ( 1 ) O(1) O(1)判断是否合法了

运输计划(运用lca的知识)

二分求lis

该方法简直是神啊,直接把 n 2 n^2 n2 n l o g n nlogn nlogn
具体做法其实有两种,普通二分,和 l o w e r − b o u n d lower-bound lowerbound函数,但是具体思想是一样的
f [ i ] f[i] f[i]表示,长度为 i i i的__子序列的最后一个数字
以上升子序列为例,首先判断当前数字能否构成上升子序列,能的话转移,不能的话,找到第一个大于等于它的数字,代替它
其他的类似
直接给代码吧

int work1()//最长上升子序列
{
	memset(f,10,sizeof(f));
	pos=1;
	f[1]=a[1];
	for(int i=2;i<=n;i++)
	{
		if(a[i]>f[pos]) f[++pos]=a[i];
		else 
		{
			int l=1,r=pos;
			while(l+1<r)
			{
				int mid=(l+r)/2;
				if(a[i]>f[mid]) l=mid;
				else r=mid;
			}
			if(a[i]<=f[l]) f[l]=a[i];
			else f[r]=a[i];
		}
	}
	return pos;
}
int work2()//最长下降子序列
{
	memset(f,10,sizeof(f));
	pos=1;
	f[1]=a[1];
	for(int i=2;i<=n;i++)
	{
		if(a[i]<f[pos]) f[++pos]=a[i];
		else 
		{
			int l=1,r=pos;
			while(l+1<r)
			{
				int mid=(l+r)/2;
				if(a[i]<f[mid]) l=mid;
				else r=mid;
			}
			if(a[i]>=f[l]) f[l]=a[i];
			else f[r]=a[i];
		}
	}
	return pos;
}
int work3()//最长不上升
{
	memset(f,10,sizeof(f));
	pos=1;
	f[1]=a[1];
	for(int i=2;i<=n;i++)
	{
		if(a[i]<=f[pos]) f[++pos]=a[i];
		else 
		{
			int l=1,r=pos;
			while(l+1<r)
			{
				int mid=(l+r)/2;
				if(a[i]<=f[mid]) l=mid;
				else r=mid;
			}
			if(a[i]>f[l]) f[l]=a[i];
			else f[r]=a[i];
		}
	}
	return pos;
}
int work4()//最长不下降
{
	memset(f,10,sizeof(f));
	pos=1;
	f[1]=a[1];
	for(int i=2;i<=n;i++)
	{
		if(a[i]>=f[pos]) f[++pos]=a[i];
		else 
		{
			int l=1,r=pos;
			while(l+1<r)
			{
				int mid=(l+r)/2;
				if(a[i]>=f[mid]) l=mid;
				else r=mid;
			}
			if(a[i]<f[l]) f[l]=a[i];
			else f[r]=a[i];
		}
	}
	return pos;
}

枚举->查找

当写完暴力的时候,不妨关注一下,答案是否具有单调性,如果有,就可能能把枚举,转换成二分查找,把n优化为logn,说不定能多过一些哦!
经典应用:(并非正解)
波波老师(40分)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值