原图像因为手抖产生运动模糊,利用PSF建模(模拟相机抖动(白色短线)),原图像与模糊核卷积后产生模糊效果
如果已知模糊图像和模拟的模糊核,就可以利用傅里叶变换模拟出原图像(清晰)效果
从时域变换为频域(傅里叶变换),卷积计算变为乘积,通过模糊图像除以模糊核来计算原图像,最后通过逆傅里叶变换得到原图像。
操作方法:
在傅里叶域中恢复原始图像
模糊图像通过逆卷积得到原始图像
实际处理中存在噪声
在处理图像的过程中如果忽视噪声处理图像,噪声也会被放大
在频域中,模糊图像除以模糊核得到清晰图像时,如果模糊核的值过小的话,得到的原图像的值就会越大,图像就会变得不可恢复。
模糊核本质上是一个低通滤波器。对于高频的(u,v)(图像细节),在模糊图像中的噪声很大,或是滤波器约等于0,都会导致噪声在模糊图像中被放大。
如何打消噪声:现在设计一个常量用来打消噪声,NSR(u,v)越大,该常量越小,运动模糊越小,该常量越小。常量越小,则噪声和运动模糊对于逆变换的影响越小。
现将上方算式中的G(u,v)提取出来,得到维纳滤波的公式。
噪信比:衡量噪声相对于信号强度的指标。在实际场景中,无法得到NSR(无法衡量power)。
噪信比通常被设为某个常量,通过测试,修改常量直到合理。
处理效果: