Cherry Studio + DeepSeek 搭建自己的知识库

一、预览效果

我们还是先来看看搭建完的知识库效果。
比如,我想让DeepSeek告诉我“吕毅是谁?”。
那么,吕毅到底是谁呢?
其实,我也不知道,他是我从网上下载的一篇网络小说里面的一个男性角色。
在这里插入图片描述
那么,为了让大家更加直观地好理解,我们来做个简单的对比。
首先,我们先去官网直接提问看看,这是官方给出的答案。

——看来,官方也不知道吕毅是谁(废话)。
——可能是自行编撰,也可能在模型训练时记忆的内容
在这里插入图片描述
然后,在我们搭建完私有化知识库之后,再来提问试试。

在这里插入图片描述
OK,看到了吧,这就是知识库的意义所在。

那么…科普时间到了。嘿嘿

二、什么是知识库?

知识库(Knowledge Base)是一个存储和管理知识的系统,通常包含结构化和非结构化的信息,用于帮助用户或系统快速查找和获取相关知识。

你可以把它想象成一个“知识仓库”,里面存放着各种有用的信息,比如文档、常见问题解答(FAQ)、数据库、规则、案例等。(类似答案,哈哈)

举个栗子:

假设你是一家公司的客服人员,客户问你一个关于产品的问题。

如果你有一个完善的知识库,你可以直接在知识库中搜索相关产品的使用说明或常见问题解答,快速找到答案并回复客户。

如果没有知识库,你可能需要去问同事或查找一堆文档,效率会低很多。

那说到知识库,这里我们又不得不提到另外一个词——RAG.

然后,问题又来了,那么…

三、什么是RAG?

RAG(Retrieval Augmented Generation,检索增强生成)是一种让大语言模型(LLM)变得更聪明的方法。

简单来说,它通过给模型提供一个外部的“知识库”,让模型在回答问题时可以“查资料”,从而给出更准确、更相关的答案。

举个栗子:

想象一下,大模型就像一个学生,而RAG系统就是一本字典。

当学生遇到不懂的问题时,他可以翻开字典查找相关的解释,然后再根据字典里的内容回答问题。

这样,学生不仅能回答得更准确,还能避免“瞎编”答案。

那么,当大模型遇到不懂的问题时,他也可以查字典,也就是RAG系统。

四、为什么需要RAG?

  大模型的知识有限:大模型的知识主要来自它训练时用的数据,而这些数据是有限的,尤其是企业内部的业务知识或产品信息,模型可能完全不了解。
  微调成本高:如果想让大模型学习企业特定的知识,通常需要微调模型,但这不仅成本高,而且效果也不一定好。
  幻觉问题:大模型在不熟悉的领域可能会“瞎编”答案,这在企业应用中是不可接受的,尤其是那些需要准确信息的场景。

这里,我先贴出一个 RAG 的运作流程图。
大家看看就好【不懂没关系,学会如何使用即可】。
在这里插入图片描述
好了,废话不多说,接下来就带大家具体实操了,

如何用DeepSeek + Cherry Studio在本地搭建私有知识库。
在这里插入图片描述

五、具体搭建实操步骤

步骤一:下载Cherry Studio可视化工具

步骤二:部署DeepSeek模型 + Embedding模型
    那么,这里又分为两种方式

  方式一:下载去官网下载Ollama工具
    好处: 可以实现本地部署DeepSeek模型 + Embedding模型,免费

    坏处: 需要一定的电脑配置才行,不然模型就很鸡肋

  方式二:注册硅基流动账号
    好处: 不用本地部署

    坏处: 调用云端的模型服务需要一定的费用,但是也不贵。

今天我们重点介绍的是第二种方式———硅基流动+Cherry Studio 搭建本地私有知识库。

我们可以使用Cherry Studio 来实现本地知识库,帮你更好的获取需要的内容,废话不多说直接开始。

大致简要步骤如下:

  1、注册硅基流动(SiliconFlow)账号,因为需要配置 Embedding(嵌入式模型),注册成功后你会获得系统赠送的14R(2000W Token)

  2、登录硅基流动(SiliconFlow)平台,

  3、创建API秘钥并配置AI密钥

  4、添加DeepSeek模型 + Embedding嵌入模型

  5、创建知识库

【硅基流动官网地址】

注册账号和登录平台的步骤这里我就直接省略过了。

5.1、新建API秘钥,名字随便。

在这里插入图片描述
在这里插入图片描述
然后点击 API 秘钥会自动进行复制,

拿到API秘钥后到Cherry Studio客户端内,

点击左下角【设置】——》将复制的API秘钥填写进去即可。
在这里插入图片描述
在这里插入图片描述

5.2、检查API密钥是否有效

点击右边的检查,会提示成功还是失败,当提示成功表示可以使用在这里插入图片描述
如果密钥有效,会提示连接成功。
在这里插入图片描述
接下来就可以添加模型了。

5.3、添加DeepSeek推理模型

点击底部的 【管理按钮】,在模型管理服务中查找模型,点击【全部】默认就能看到;
找到需要的模型,点击右侧【+】添加到我的模型。在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4、添加Embeding嵌入模型

我们需要添加嵌入式模型,否者无法使用知识库功能。

点击底部的 【管理按钮】,在模型管理服务中查找模型,也可以点击“嵌入模型”快速筛选;
找到需要的模型,点击右侧【+】添加到我的模型。
在这里插入图片描述
这里需要注意下:

  BAAI/bge-m3模型是免费的,

  Pro/BAAI/bge-m3模型是收费的,

  区别的话官网有介绍,可以去看看,

我这里用 Pro/BAAI/bge-m3 进行演示。
在这里插入图片描述

5.5、 创建知识库

  1、知识库入口:在 CherryStudio 左侧工具栏,点击知识库图标,即可进入管理页面;
  2、添加知识库:点击添加,开始创建知识库;
  3、命名:输入知识库的名称并添加嵌入模型,以 Pro/BAAI/bge-m3 为例,即可完成创建。
在这里插入图片描述

5.6、添加文件并向量化

  添加文件: 点击添加文件的按钮,打开文件选择;
  选择文件: 选择支持的文件格式,如 pdf,docx,pptx,xlsx,txt,md,mdx 等,并打开;
  向量化: 系统会自动进行向量化处理,当显示完成时(绿色 ✓),代表向量化已完成
在这里插入图片描述

5.7、添加多种来源的数据

Cherry Studio 支持多种添加数据的方式:

  1、文件夹目录: 可以添加整个文件夹目录,该目录下支持格式的文件会被自动向量化;
  2、网址链接: 支持网址url,如:https://www.xiaoerpro.com/;
  3、站点地图: 支持xml格式的站点地图,如:https://www.xiaoerpro.com/sitemap.xml;
  4、纯文本笔记: 支持输入纯文本的自定义内容。
  5、向量化: 当显示绿色 “√” 表示向量化完成,点击 探索知识库按钮即可开始查询
在这里插入图片描述

5.8、 搜索知识库

当文件等资料向量化完成后,即可进行查询:

  1、点击页面下方的搜索知识库按钮;
  2、输入查询的内容;
  3、呈现搜索的结果;
  4、并显示该条结果的匹配分数。
在这里插入图片描述
这里我随便上传一个txt来做测试,

为了做这个知识库的测试,

我还专门跑到一个小说网站下载了一篇txt格式的网络小说。

5.9、 输入关键词搜索知识库

比如,这里我输入:”吕毅“
在这里插入图片描述

5.10、 对话中引用知识库生成回复

创建一个新的话题,在对话工具栏中,点击知识库,会展开已经创建的知识库列表,选择需要引用的知识库;
输入并发送问题,模型即返回通过检索结果生成的答案 ;
同时,引用的数据来源会附在答案下方,可快捷查看源文件。
在这里插入图片描述

在这里插入图片描述
OK,其实到这里其实已经差不多就完成了,

然后,为了更好的使用知识库,

我们还可以再新建一个 助手 下面需要填写 提示词,

提示词太长,我把链接地址放下面,自己去复制即可。

【提示词地址:】
在这里插入图片描述
在这里插入图片描述
这里的prompt复制后,在对应的对话界面的提示词中粘贴即可。
在这里插入图片描述
将提示词 粘贴进来,点击关闭后即可使用。

正常思考会很长,可以选择将代码块折叠打开,不会占用太多排版。
在这里插入图片描述
在这里插入图片描述
然后在 助理的聊天界面底部,将知识库打开选中,

OK,到此就大功告成,可以直接使用了。
Cherry Studio 还有其他功能,

例如翻译,生图等,可以自己去捣鼓下。

最后,关于Token的计算,补充一下

可以看看下面这张图:
在这里插入图片描述
【转载自】

### 使用 Cherry StudioDeepSeek 搭建知识库 #### 准备工作 为了使用Cherry StudioDeepSeek搭建知识库,准备工作至关重要。这涉及获取必要的软件工具并完成初步配置。 - 获取 Ollama 客户端用于运行 DeepSeek 模型,通过访问 ollama官网[^2] 并按照指示下载适合操作系统的版本。 - 下载并安装 `deepseek-r1` 版本的模型,执行命令 `ollama run deepseek-r1:1.5b` 来启动该过程。 - 文本嵌入对于创建高效的知识表示非常重要;为此需拉取特定的文本嵌入模型,利用命令 `ollama pull nomic-embed-text` 实现这一目标。 - 接下来是从官方网址 https://cherry-ai.com/ 获得 Cherry Studio 的客户端,这是管理整个流程的关键界面之一。 #### 设置环境与导入数据 一旦上述组件准备就绪,则可以继续进行更深入的集成: - 启动 Cherry Studio 应用程序之后,在其中定义好要使用的 DeepSeek 模型参数以及关联到之前加载过的文本嵌入模型。 - 构建知识库的技术路径由 cherry studio 提供了一个全面的解决方案框架及其工程实现示范[^1]。 #### 数据处理与优化 针对具体应用场景调整参数以提高性能表现,比如微调预训练好的深度学习模型或是定制化特征提取方式来适应不同类型的文档资料集。 ```python import requests def import_knowledge_base(url, api_key): headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(f"{url}/knowledge-base/import", headers=headers) if response.status_code == 200: print("Knowledge base imported successfully.") else: print("Failed to import knowledge base.") # Example usage of the function with hypothetical URL and API key. import_knowledge_base('http://localhost:8080', 'your_api_key_here') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值