转自: http://www.cnblogs.com/qwertWZ/p/4582096.html
本章介绍了《机器学习实战》这本书中的第一个机器学习算法:k-近邻算法,它非常有效而且易于掌握。首先,我们将探讨k-近邻算法的基本理论,以及如何使用距离测量的方法分类物品;其次我们将使用Python从文本文件中导入并解析数据;再次,本文讨论了当存在许多数据来源时,如何避免计算距离时可能碰到的一些常见错误;最后,利用实际的例子讲解如何使用k-近邻算法改进约会网站和手写数字识别系统。
1. k-近邻算法概述
简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。
k-近邻算法
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
k-近邻算法(kNN)的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
现在我们回到前面电影分类的例子,使用k-近邻算法分类爱情片和动作片。有人曾经统计过很多电影的打斗镜头和接吻镜头,图1显示了6部电影的打斗和接吻镜头数。假如有一部未看过的电影,如何确定它是爱情片还是动作片呢?我们可以使用kNN来解决这个问题。
图1 使用打斗和接吻镜头数分类电影
首先我们需要知道这个未知电影存在多少个打斗镜头和接吻镜头,图1中问号位置是该未知电影出现的镜头数图形化展示,具体数字参见下表。
表1 每部电影的打斗镜头数、接吻镜头数以及电影评估类型
电影名称 | 打斗镜头 | 接吻镜头 | 电影类型 |
California Man | 3 | 104 | 爱情片 |
He’s Not Really into Dudes | 2 | 100 | 爱情片 |
Beautiful Woman | 1 | 81 | 爱情片 |
Kevin Longblade | 101 | 10 | 动作片 |
Robo Slayer 3000 | 99 | 5 | 动作片 |
Amped II | 98 | 2 | 动作片 |
? | 18 | 90 | 未知 |
计算未知电影与样本集中其他电影的距离,我们可以比较其相似度:
表2 已知电影与未知电影的距离
电影名称 | 与未知电影的距离 |
California Man | 20.5 |
He’s Not Really into Dudes | 18.7 |
Beautiful Woman | 19.2 |
Kevin Longblade | 115.3 |
Robo Slayer 3000 | 117.4 |
Amped II | 118.9 |
现在我们得到了样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到k个距离最近的电影。假定k=3,则三个最靠近的电影依次是He’s Not Really into Dudes、Beautiful Woman和California Man。k-近邻算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。
k-近邻算法的一般流程
收集数据:可以使用任何方法。
准备数据:距离计算所需要的数值,最好是结构化的数据格式。
分析数据:可以使用任何方法。
测试算法:计算错误率。
使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类。
1.1 准备:使用Python导入数据
创建名为kNN.py的Python模块,在kNN.py文件中增加下面的代码:
1
2
3
4
5
6
7
|
from numpy import *
import operator
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = [ 'A' , 'A' , 'B' , 'B' ]
return group , labels
|
这个函数创建了我们将要使用的样例数据集。
在Python shell中输入下列命令测试上面的函数:
1
2
|
>>> import kNN
>>> group , labels = kNN.createDataSet()
|
1.2 实施kNN算法
k-近邻算法的伪代码
对未知类型属性的数据集中的每个点依次执行以下操作:
(1) 计算已知类别数据集中的点与当前点之间的距离;
(2) 按照距离增序排序;
(3) 选取与当前点距离最近的k个点;
(4) 决定这k个点所属类别的出现频率;
(5) 返回前k个点出现频率最高的类别作为当前点的预测分类。
函数实现如下: