flink
文章平均质量分 87
flink
tomjourney
积善之家 必有余庆
展开
-
【5】flink窗口与水位线watermark例子
【README】本文总结了flink时间语义和水位线的知识;【1】时间语义1)时间分类Event Time: 事件创建的时间(事件发生时间); Ingestion Time:数据进入flink的实际; Processing Time:执行算子的本地机器时间 ;我们主要讨论的是 事件时间;【2】水位线...原创 2022-05-09 13:07:46 · 1561 阅读 · 0 评论 -
【4.1】flink窗口算子的trigger触发器和Evictor清理器
【README】本文记录了 窗口算子的触发器trigger和 evictor清理器;trigger触发器:决定了一个窗口(由 window assigner 定义)何时可以被 window function 处理; evictor清理器: evictor 可以在 trigger 触发后、调用窗口函数之前或之后从窗口中删除元素;【1】触发器trigger1)Trigger 接口提供了五个方法来响应不同的事件:onElement() 方法在每个元素被加入窗口时调用。 onEventTime原创 2022-04-21 20:46:03 · 2899 阅读 · 0 评论 -
【4】flink window窗口算子
【README】本文记录了 窗口算子操作; 本文使用的flink为 1.14.4 版本; 本文部分内容总结自 flink 官方文档:窗口 | Apache Flink窗口 # 窗口(Window)是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中,再对每个“桶”加以处理。 本文的重心将放在 Flink 如何进行窗口操作以及开发者如何尽可能地利用 Flink 所提供的功能。下面展示了 Flink 窗口在 keyed streams 和 non-keyed streams 上使用的基本结构原创 2022-04-21 22:24:15 · 2536 阅读 · 2 评论 -
【3】flink sink
【README】本文记录了flink sink操作,输出目的存储器(中间件)包括kafka; es; db; 等等有很多; 本文只给出了 sink2kafka的代码;本文使用的flink为 1.14.4 版本;本文部分内容参考了 flink 官方文档,如下:Kafka | Apache Flinkhttps://nightlies.apache.org/flink/flink-docs-master/zh/docs/connectors/datastream/kafka/【1】原创 2022-04-16 19:26:16 · 1483 阅读 · 0 评论 -
【2】flink数据流转换算子
【README】本文记录了flink对数据的转换操作,包括基本转换,map,flatMap,filter; 滚动聚合; 本文使用的flink为 1.14.4 版本;maven依赖如下:<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <原创 2022-04-16 17:13:44 · 2178 阅读 · 0 评论 -
【1】flink-source读取数据
【README】本文记录了flink读取不同数据源的编码方式,数据源包括;集合(元素列表); 文件 kafka; 自定义数据源;本文使用的flink为 1.14.4 版本;maven依赖如下:<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId>原创 2022-04-15 21:51:23 · 1122 阅读 · 0 评论 -
pre2-flink单机部署与job提交
【README】本文记录了flink单机部署,以及flink job2种提交方式;【1】flink 单机部署step1)下载flink 包;Apache Flink: Stateful Computations over Data Streamshttps://flink.apache.org/step2)解压tar -zxvf flink-1.14.4-bin-scala_2.12.tgz -C flink-1.14.4step3)查看flink 默认配置vim con.原创 2022-04-09 17:45:00 · 1935 阅读 · 0 评论 -
pre1-flink理论-批处理与流处理+简单示例
【README】1.本文包含了 批处理与流处理的代码示例;批处理:把数据 攒在一起(或攒一段时间或攒一定内存大小),然后再处理,这叫批处理; 流处理:数据每来一个就处理一个;2.特点:数据处理方式 特点 批处理 1.高延时; 流处理 1.低延时; 3.引入flink的maven依赖:<dependencies> <dependency> <groupId>org.apache.fl原创 2022-04-09 11:58:47 · 1746 阅读 · 1 评论