导语
PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提供了不同的神经网络模型供大家学习和使用。本周推文目录如下:
3.19:【图像分类】
如何转化模型文件
3.20:【图像分类】
使用经典模型进行图像分类
3.21:【目标检测】
SSD目标检测
3.22:【场景文字识别】
场景文字识别
图像相比文字能够提供更加生动、容易理解及更具艺术感的信息,是人们转递与交换信息的重要来源。图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础,在许多领域都有着广泛的应用。如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。
这里将介绍如何在PaddlePaddle下使用AlexNet、VGG、GoogLeNet、ResNet、Inception-v4、Inception-ResNet-v2和Xception模型进行图像分类。图像分类问题的描述和这些模型的介绍可以参考PaddlePaddle book。(https://github.com/PaddlePaddle/book/tree/develop/03.image_classification)
|1. 训练模型
[1]初始化
在初始化阶段需要导入所用的包,并对PaddlePaddle进行初始化。
import gzip
import argparse
import paddle.v2.dataset.flowers as flowers
import paddle.v2 as paddle
import reader
import vgg
import resnet
import alexnet
import googlenet
import inception_v4
import inception_resnet_v2
import xception
# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
[2]定义参数和输入
设置算法参数(如数据维度、类别数目和batch size等参数),定义数据输入层image和类别标签lbl。 所用数据集是flowers(http://www.robots.ox.ac.uk/~vgg/data/flowers/102/)。花的种类是102,因此,CLASS_DIM=102。
# Use 3 * 331 * 331 or 3 * 299 * 299 for DATA_DIM in Inception-ResNet-v2.
DATA_DIM = 3 * 224 * 224
CLASS_DIM = 102
BATCH_SIZE = 128
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(DATA_DIM))
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(CLASS_DIM))
[3]获得所用模型
这里可以选择使用AlexNet、VGG、GoogLeNet、ResNet、Inception-v4、Inception-ResNet-v2和Xception模型中的一个模型进行图像分类。通过调用相应的方法可以获得网络最后的Softmax层。
使用AlexNet模型
指定输入层image和类别数目CLASS_DIM后,可以通过下面的代码得到AlexNet的Softmax层。
out = alexnet.alexnet(image, class_dim=CLASS_DIM)
使用VGG模型
根据层数的不同,VGG分为VGG13、VGG16和VGG19。使用VGG16模型的代码如下:
out = vgg.vgg16(image, class_dim=CLASS_DIM)
类似地,VGG13和VGG19可以分别通过vgg.vgg13和vgg.vgg19方法获得。
使用GoogLeNet模型
GoogLeNet在训练阶段使用两个辅助的分类器强化梯度信息并进行额外的正则化。因此googlenet.googlenet共返回三个Softmax层,如下面的代码所示:
out, out1, out2 = googlenet.googlenet(image, class_dim=CLASS_DIM)
loss1 = paddle.layer.cross_entropy_cost(
input=out1, label=lbl, coeff=0.3)
paddle.evaluator.classification_error(input=out1, label=lbl)
loss2 = paddle.layer.cross_entropy_cost(
input=out2, label=lbl, coeff=0.3)
paddle.evaluator.classification_error(input=out2, label=lbl)
extra_layers = [loss1, loss2]
对于两个辅助的输出,这里分别对其计算损失函数并评价错误率,然后将损失作为后文SGD的extra_layers。
使用ResNet模型
ResNet模型可以通过下面的代码获取:
out = resnet.resnet_imagenet(image, class_dim=CLASS_DIM)
使用Inception-v4模型
Inception-v4模型可以通过下面的代码获取, 本例中使用的模型输入大小为3 * 224 * 224 (原文献中使用的输入大小为3 * 299 * 299):
out = inception_v4.inception_v4(image, class_dim=CLASS_DIM)
使用Inception-ResNet-v2模型
提供的Inception-ResNet-v2模型支持3 * 331 * 331和3 * 299 * 299两种大小的输入,同时可以自行设置dropout概率,可以通过如下的代码使用:
out = inception_resnet_v2.inception_resnet_v2(
image, class_dim=CLASS_DIM, dropout_rate=0.5, size=DATA_DIM)
注意,由于和其他几种模型输入大小不同,若配合提供的reader.py使用Inception-ResNet-v2时请先将reader.py中paddle.image.simple_transform中的参数为修改为相应大小。
使用Xception模型
Xception模型可以通过下面的代码获取:
out = xception.xception(image, class_dim=CLASS_DIM)
[4]定义损失函数
cost = paddle.layer.classification_cost(input=out, label=lbl)
[5]创建参数和优化方法
# Create parameters
parameters = paddle.parameters.create(cost)
# Create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
BATCH_SIZE),
learning_rate=0.001 / BATCH_SIZE,
learning_rate_decay_a=0.1,
learning_rate_decay_b=128000 * 35,
learning_rate_schedule="discexp", )
通过 learning_rate_decay_a (简写a) 、learning_rate_decay_b (简写b) 和 learning_rate_schedule 指定学习率调整策略,这里采用离散指数的方式调节学习率,计算公式如下, n 代表已经处理过的累计总样本数,lr0 即为参数里设置的 learning_rate。
[6]定义数据读取
首先以花卉数据(http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html)为例说明如何定义输入。下面的代码定义了花卉数据训练集和验证集的输入:
train_reader = paddle.batch(
paddle.reader.shuffle(
flowers.train(),
buf_size=1000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
flowers.valid(),
batch_size=BATCH_SIZE)
若需要使用其他数据,则需要先建立图像列表文件。reader.py定义了这种文件的读取方式,它从图像列表文件中解析出图像路径和类别标签。
图像列表文件是一个文本文件,其中每一行由一个图像路径和类别标签构成,二者以跳格符(Tab)隔开。类别标签用整数表示,其最小值为0。下面给出一个图像列表文件的片段示例:
dataset_100/train_images/n03982430_23191.jpeg 1
dataset_100/train_images/n04461696_23653.jpeg 7
dataset_100/train_images/n02441942_3170.jpeg 8
dataset_100/train_images/n03733281_31716.jpeg 2
dataset_100/train_images/n03424325_240.jpeg 0
dataset_100/train_images/n02643566_75.jpeg 8
训练时需要分别指定训练集和验证集的图像列表文件。这里假设这两个文件分别为train.list和val.list,数据读取方式如下:
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader('train.list'),
buf_size=1000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
reader.test_reader('val.list'),
batch_size=BATCH_SIZE)
[7]定义事件处理程序
# End batch and end pass event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1 == 0:
print "\nPass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if isinstance(event, paddle.event.EndPass):
with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
parameters.to_tar(f)
result = trainer.test(reader=test_reader)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
[8]定义训练方法
对于AlexNet、VGG、ResNet、Inception-v4、Inception-ResNet-v2和Xception,可以按下面的代码定义训练方法:
# Create trainer
trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=optimizer)
GoogLeNet有两个额外的输出层,因此需要指定extra_layers,如下所示:
# Create trainer
trainer = paddle.trainer.SGD(
cost=cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=extra_layers)
[9]开始训练
trainer.train(
reader=train_reader, num_passes=200, event_handler=event_handler)
|2.应用模型
模型训练好后,可以使用下面的代码预测给定图片的类别。
# load parameters
with gzip.open('params_pass_10.tar.gz', 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
file_list = [line.strip() for line in open(image_list_file)]
test_data = [(paddle.image.load_and_transform(image_file, 256, 224, False)
.flatten().astype('float32'), )
for image_file in file_list]
probs = paddle.infer(
output_layer=out, parameters=parameters, input=test_data)
lab = np.argsort(-probs)
for file_name, result in zip(file_list, lab):
print "Label of %s is: %d" % (file_name, result[0])
首先从文件中加载训练好的模型(代码里以第10轮迭代的结果为例),然后读取image_list_file中的图像。image_list_file是一个文本文件,每一行为一个图像路径。代码使用paddle.infer判断image_list_file中每个图像的类别,并进行输出。
|3. 使用预训练模型
为方便进行测试和fine-tuning,我们提供了一些对应于示例中模型配置的预训练模型,目前包括在ImageNet 1000类上训练的ResNet50、ResNet101和Vgg16,请使用models目录下的脚本model_download.sh进行模型下载,如下载ResNet50可进入models目录并执行"sh model_download.sh ResNet50",完成后同目录下的Paddle_ResNet50.tar.gz即是训练好的模型,可以在代码中使用如下两种方式进行加载模:
parameters = paddle.parameters.Parameters.from_tar(gzip.open('Paddle_ResNet50.tar.gz', 'r'))
parameters = paddle.parameters.create(cost)
parameters.init_from_tar(gzip.open('Paddle_ResNet50.tar.gz', 'r'))
注意事项
模型压缩包中所含各文件的文件名和模型配置中的参数名一一对应,是加载模型参数的依据。我们提供的预训练模型均使用了示例代码中的配置,如需修改网络配置,请多加注意,需要保证网络配置中的参数名和压缩包中的文件名能够正确对应。
end
*原创贴,版权所有,未经许可,禁止转载
*值班小Paddle:wangp
*欢迎在留言区分享您的观点
*为了方便大家问题的跟进解决,我们采用Github Issue来采集信息和追踪进度。大家遇到问题请搜索Github Issue,问题未解决请优先在Github Issue上提问,有助于问题的积累和沉淀
点击“阅读原文”,访问Github Issue。