1.题目如下:
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
示例 1:
输入:heights = [2,1,5,6,2,3]
输出:10
解释:最大的矩形为图中红色区域,面积为 10
示例 2:
输入: heights = [2,4]
输出: 4
提示:
1 <= heights.length <=10^5
0 <= heights[i] <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2.代码如下:
//单调栈:
/*
* 通过栈来记录每个柱子的左右的最近并小于该柱子的柱子位置(边界);
* 有一规律:加入从左到右遍历:
* 如果i+1高于i,那么i+1的左边最近边界就是i;
* 如果i+1小于i,那么i+1左边的所有大于他的边界,都不可能成为i+1右边的柱子的左边界了,因为有i+1在右边;
* 因此栈实现:如果i+1大于i,把i+1入栈;
* 如果i+1<i;出栈所有大于i+1的柱子,剩下的左边柱子肯定就是i+1的左边界柱子,i+1右边的再有小于i+1的柱子,再次出栈行为;
* 然后通过这个方法,直接可得到每个柱子的左边界位置
*/
int largestRectangleArea(vector<int>& heights) {
int n = heights.size();
//用来存储左右边界位置
vector<int> left(n), right(n);
stack<int> stack1;
for(int i=0;i<n;i++){
// 如果栈顶的位置柱子高度大于该柱子,就出栈直到小于,这个时候栈顶的小于该柱子的柱子高度就是最左的边界
while(!stack1.empty() && heights[stack1.top()]>=heights[i]){
stack1.pop();
}
left[i] = (stack1.empty() ? -1 : stack1.top());
stack1.push(i);
}
stack1=stack<int>();
for(int i=n-1;i>=0;i--){
while(!stack1.empty() && heights[stack1.top()]>=heights[i]){
stack1.pop();
}
right[i] = (stack1.empty() ? n : stack1.top());
stack1.push(i);
}
//遍历left和right,分别得到每个柱子的左右边界,然后计算最大面积
int ans = 0;
for (int i = 0; i < n; ++i) {
ans = max(ans, (right[i] - left[i] - 1) * heights[i]);
}
return ans;
}
};