LeetCode 84. 柱状图中最大的矩形(C++)

1.题目如下:

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

示例 1:

在这里插入图片描述

输入:heights = [2,1,5,6,2,3]
输出:10

解释:最大的矩形为图中红色区域,面积为 10

示例 2:

在这里插入图片描述

输入: heights = [2,4]
输出: 4

提示:

1 <= heights.length <=10^5
0 <= heights[i] <= 10^4

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2.代码如下:

//单调栈:
    /*
    * 通过栈来记录每个柱子的左右的最近并小于该柱子的柱子位置(边界);
    * 有一规律:加入从左到右遍历:
    * 如果i+1高于i,那么i+1的左边最近边界就是i;
    * 如果i+1小于i,那么i+1左边的所有大于他的边界,都不可能成为i+1右边的柱子的左边界了,因为有i+1在右边;
    * 因此栈实现:如果i+1大于i,把i+1入栈;
    * 如果i+1<i;出栈所有大于i+1的柱子,剩下的左边柱子肯定就是i+1的左边界柱子,i+1右边的再有小于i+1的柱子,再次出栈行为;
    * 然后通过这个方法,直接可得到每个柱子的左边界位置
    */
    int largestRectangleArea(vector<int>& heights) {
        int n = heights.size();
        //用来存储左右边界位置
        vector<int> left(n), right(n);
        stack<int> stack1;
        for(int i=0;i<n;i++){
           // 如果栈顶的位置柱子高度大于该柱子,就出栈直到小于,这个时候栈顶的小于该柱子的柱子高度就是最左的边界
            while(!stack1.empty() && heights[stack1.top()]>=heights[i]){
                stack1.pop();
            }
            left[i] = (stack1.empty() ? -1 : stack1.top());
            stack1.push(i);
        }

        stack1=stack<int>();
        for(int i=n-1;i>=0;i--){
            while(!stack1.empty() && heights[stack1.top()]>=heights[i]){
                stack1.pop();
            }
            right[i] = (stack1.empty() ? n : stack1.top());
            stack1.push(i);
        }

        //遍历left和right,分别得到每个柱子的左右边界,然后计算最大面积
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = max(ans, (right[i] - left[i] - 1) * heights[i]);
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_panbk_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值