LeetCode 337. 打家劫舍 III(C++)*

该题也是使用动态规划的思路,主要考虑根节点的最大金额和左右子节点的关系,其中分为两种情况:有该结点有没有偷钱,其次要遵守不报警原则。可得到状态转移方程:
f为根节点被选中的最大,g为根节点没被选中的最大:
f(o)=g(l)+g®;g(o)=max(f(o->lefr),g(o->left))+max(f(o->right),g(o->right))

1.题目如下:

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:

在这里插入图片描述

输入: root = [3,2,3,null,3,null,1]
输出: 7 

解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7

示例 2:

在这里插入图片描述

输入: root = [3,4,5,1,3,null,1]
输出: 9

解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9

2.代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:

//思路一:动态规划
/*
    首先找最优子结构:f为根节点被选中的最大,g为根节点没被选中的最大:
    f(o)=g(l)+g(r);g(o)=max(f(o->lefr),g(o->left))+max(f(o->right),g(o->right))
*/
    unordered_map <TreeNode*, int> f, g;

    void dfs(TreeNode* node) {
        if (!node) {
            return;
        }
        dfs(node->left);
        dfs(node->right);
        f[node] = node->val + g[node->left] + g[node->right];
        g[node] = max(f[node->left], g[node->left]) + max(f[node->right], g[node->right]);
    }

    int rob(TreeNode* root) {
        dfs(root);
        return max(f[root], g[root]);
    }



//思路二:直接用递归dfs遍历,但会超时
/**f(root)=max(f(root->left),f(root->right),root->val+)*/
/*
    int rob(TreeNode* root) {
        if(root==nullptr){
            return 0;
        }
        return max(rob(root->left)+rob(root->right),root->val+rob(root->left==nullptr?nullptr:root->left->left)+rob(root->left==nullptr?nullptr:root->left->right)+rob(root->right==nullptr?nullptr:root->right->left)+rob(root->right==nullptr?nullptr:root->right->right));
    }
*/
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_panbk_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值