思路一:暴力循环,枚举法,时间复杂度O(n2)
思路二:前缀和 + 哈希表优化;首先对于pre[i]:前i个元素的和;要满足:pre[i]-k=pre[j],那么在(i,j)之间就是k;时间复杂度O(n)
原题链接:https://leetcode.cn/problems/subarray-sum-equals-k/?favorite=2cktkvj
1.题目如下:
给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的连续子数组的个数 。
示例 1:
输入:nums = [1,1,1], k = 2
输出:2
示例 2:
输入:nums = [1,2,3], k = 3
输出:2
提示:
1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-107 <= k <= 107
2.代码如下:
class Solution {
public:
//思路一:暴力循环,枚举法,时间复杂度O(n2)
/*
int subarraySum(vector<int>& nums, int k) {
int res=0;
for(int i=0;i<nums.size();i++){
int sum=0;
for(int j=i;j>=0;j--){
sum+=nums[j];
if(sum==k){
res++;
}
}
}
return res;
}
*/
//思路二:前缀和 + 哈希表优化
/*
首先对于pre[i]:前i个元素的和;
要满足:pre[i]-k=pre[j],那么在(i,j)之间就是k
时间复杂度O(n)
*/
int subarraySum(vector<int>& nums,int k) {
unordered_map<int,int> mp;
mp[0]=1;
int count=0,pre=0;
for(auto& x:nums) {
pre+=x;
if(mp.find(pre-k)!=mp.end()) {
count+=mp[pre-k];
}
mp[pre]++;
}
return count;
}
};