思路:
就是一个辅助数组来存储变化后的数组,并更新原数组,与目标数组比较;数组变化照搬公式就行了
原题链接:https://leetcode.cn/problems/minimum-number-of-operations-to-reinitialize-a-permutation/submissions/397287686/
1.题目如下:
给你一个偶数 n ,已知存在一个长度为 n 的排列 perm ,其中 perm[i] == i(下标 从 0 开始 计数)。
一步操作中,你将创建一个新数组 arr ,对于每个 i :
如果 i % 2 == 0 ,那么 arr[i] = perm[i / 2]
如果 i % 2 == 1 ,那么 arr[i] = perm[n / 2 + (i - 1) / 2]
然后将 arr 赋值给 perm 。
要想使 perm 回到排列初始值,至少需要执行多少步操作?返回最小的 非零 操作步数。
示例 1:
输入:n = 2
输出:1
解释:
最初,perm = [0,1]
第 1 步操作后,perm = [0,1] 所以,仅需执行 1 步操作
示例 2:
输入:n = 4
输出:2
解释:
最初,perm = [0,1,2,3]
第 1 步操作后,perm = [0,2,1,3]
第 2 步操作后,perm = [0,1,2,3] 所以,仅需执行 2 步操作
示例 3:
输入:n = 6
输出:4
提示:
2 <= n <= 1000
n 是一个偶数
2.代码如下:
class Solution {
public:
//思路:就是一个辅助数组来存储变化后的数组,并更新原数组,与目标数组比较
int reinitializePermutation(int n) {
//参照函数target
vector<int> target(n);
vector<int> nums(n);
// itoa函数赋值
iota(target.begin(),target.end(),0);
iota(nums.begin(),nums.end(),0);
int res=0;
vector<int> temp(n);
while(true){
for(int i=0;i<n;i++){
if(i%2==0){
temp[i]=nums[i/2];
}
if(i%2==1){
temp[i]=nums[n/2+(i-1)/2];
}
}
copy(temp.begin(), temp.end(), nums.begin());
res++;
if(nums==target){
break;
}
}
return res;
}
};