枚举算法介绍和【题解】——统计方形(数据加强版)

1.枚举算法介绍

    枚举算法,只在有限的时间内不重复,不遗漏的枚举所有可能的情况。因为其思路过于简单直接,所以也被称为暴力(Brute-Force)算法。
    在写题的时候,验证复杂的程序的正确性,可写功能一致的暴力对照程序,并构造小规模输入数据,比较二者输出。这一过程称作对拍,在赛场上是非常实用的查错技巧。
    因为思路过于简单,所以枚举算法的时间复杂度一般都较高。所以我们就需要进行“剪枝”,即减少不必要的枚举情况或状态。有时也会使用数学,更改枚举的对象来进行优化。

2.统计方形(数据加强版)

通往洛谷的传送门

题目背景

1997年普及组第一题

题目描述

有一个 n × m n \times m n×m 方格的棋盘,求其方格包含多少正方形、长方形(不包含正方形)。

输入格式

一行,两个正整数 n , m n,m n,m n ≤ 5000 , m ≤ 5000 n \leq 5000,m \leq 5000 n5000,m5000)。

输出格式

一行,两个正整数,分别表示方格包含多少正方形、长方形(不包含正方形)。

输入输出样例

输入 #1

2 3

输出 #1

8 10

解法1.枚举格点

2.1.题意解析

    在[NOIP1997 普及组] 棋盘问题这一篇文章中,我们已经介绍了两种对应的解法。但是只有第二种要稍加修改才能通过。在这一篇文章,我们着重介绍其他两种解法。

    我们可以枚举每一个格点,并将它固定为一个方形的左上角,那么以格点(x,y)为左上角的正方形边长最大为min(x,y),则以格点(x,y)为左上角的正方形有min(x,y)个。那么长方形就是x*y-min(x,y)个。

    答案记得开long long

2.2.AC代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
    typedef long long LL;
    LL squ=0,rec=0,n,m;//统计正方形和长方形的数量
    cin>>n>>m;
    for(LL x=0;x<=n;x++)//枚举x
        for(LL y=0;y<=m;y++)//枚举y
        {
            LL tmp=min(x,y);//计算正方形的数量
            squ+=tmp;
            rec+=x*y-tmp;
        }
    cout<<squ<<" "<<rec;
    return 0;
}

解法2.枚举正方形

3.1.题意分析

    在这里,我们可以先枚举正方形的数量,再根据乘法原理,得出总共的矩形数量。最后减去正方形就是长方形的数量了。

    具体的乘法原理解释请看[NOIP1997 普及组] 棋盘问题

    我们可以发现,每一个矩形的长都是从 n + 1 n+1 n+1条长里面选两条,每一个矩形的宽也都是从 m + 1 m+1 m+1条宽里面选两条。这不就是组合数吗!最后可以得出,这个棋盘的矩形个数为
长: C n m = n ! ( n − m ) ! m ! = ( n + 1 ) ! ( n + 1 − 2 ) ! 2 ! = 1 ∗ 2 ∗ . . . ∗ ( n + 1 ) 1 ∗ 2 ∗ . . . ∗ ( n − 1 ) 2 = n ∗ ( n + 1 ) 2 宽: C n m = n ! ( n − m ) ! m ! = ( m + 1 ) ! ( m + 1 − 2 ) ! 2 ! = 1 ∗ 2 ∗ . . . ∗ ( m + 1 ) 1 ∗ 2 ∗ . . . ∗ ( m − 1 ) 2 = m ∗ ( m + 1 ) 2 \begin{align*} 长:C_n^m&=\frac{n!}{(n-m)!m!}\\ &=\frac{(n+1)!}{(n+1-2)!2!}\\ &=\frac{1*2*...*(n+1)}{1*2*...*(n-1)2}\\ &=\frac{n*(n+1)}{2} \end{align*} \begin{align*} 宽:C_n^m&=\frac{n!}{(n-m)!m!}\\ &=\frac{(m+1)!}{(m+1-2)!2!}\\ &=\frac{1*2*...*(m+1)}{1*2*...*(m-1)2}\\ &=\frac{m*(m+1)}{2} \end{align*} 长:Cnm=(nm)!m!n!=(n+12)!2!(n+1)!=12...(n1)212...(n+1)=2n(n+1)宽:Cnm=(nm)!m!n!=(m+12)!2!(m+1)!=12...(m1)212...(m+1)=2m(m+1)
    将长的方案数和宽的方案数相乘得到最终答案: n ∗ ( n + 1 ) ∗ m ∗ ( m + 1 ) 4 \frac{n*(n+1)*m*(m+1)}{4} 4n(n+1)m(m+1)

3.2.AC代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
    typedef long long LL;
    LL squ=0,rec=0,n,m;//统计正方形和长方形的数量
    cin>>n>>m;
    for (LL a=1;a<=min(m,n);a++)//计算正方形
        squ+=(n-a+1)*(m-a+1);
    rec=n*(n+1)*m*(m+1)/4-squ;
    cout<<squ<<" "<<rec;
    return 0;
}

喜欢就订阅此专辑吧!

【蓝胖子编程教育简介】
蓝胖子编程教育,是一家面向青少年的编程教育平台。平台为全国青少年提供最专业的编程教育服务,包括提供最新最详细的编程相关资讯、最专业的竞赛指导、最合理的课程规划等。本平台利用趣味性和互动性强的教学方式,旨在激发孩子们对编程的兴趣,培养他们的逻辑思维能力和创造力,让孩子们在轻松愉快的氛围中掌握编程知识,为未来科技人才的培养奠定坚实基础。

欢迎扫码关注蓝胖子编程教育
在这里插入图片描述

  • 20
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值